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Abstract

Classical adaptive beamforming techniques are based on idealistic assumptions that 

are not valid in many practical situations. One of the serious problems that occur in 

practical adaptive array systems is the mismatch between the presumed and actual 

array manifolds. This mismatch can arise due to look direction errors, sensor loca­

tion errors, or wavefront distortions due to propagation in inhomogeneous media. A 

similar problem occurs in multiuser detection where the desired user signature is not 

precisely known at the receiver because of the effect of the communication channel, 

e.g., frequency selective fading. Recently, there has been much interest in devel­

oping mathematically rigourous adaptive array processing and multiuser detection 

algorithms that provide an amount of robustness directly related to the amount of 

uncertainty in the signal environment. In this thesis, we aim to develop computation­

ally efficient robust adaptive beamforming and multiuser detection algorithms that 

are applicable to practical nonstationary environments where the array and signal 

characteristics are not precisely known.

First, we consider the narrowband signal environment. We develop a novel com­

putationally efficient implementation of the robust minimum variance distortionless 

response (MVDR) beamformer. This beamformer is based on worst-case performance 

optimization and has been shown to provide excellent robustness against arbitrary 

but norm-bounded mismatches in the desired signal steering vector. However, ex­

isting algorithms that solve this problem do not have direct online implementations.

v
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We develop an extended Kalman filter (EKF)-based algorithm to estimate the beam- 

former weight vector adaptively with lower computational cost per iteration than that 

of previous existing algorithms. This makes it very attractive in practical nonstation­

ary scenarios where the beamformer weight vector has to be updated whenever a 

new data snapshot is received. We also present two improved modifications of our 

algorithm to additionally account for abruptly changing nonstationary environments.

Next, we develop a robust wideband beamformer that extends previous narrow­

band approaches while avoiding suboptimal subband decomposition. Our beamformer 

provides high gain not only to the presumed desired signal but also to all signals within 

a pre-specified uncertainty set. The phase response of the array is controlled through 

additional linear phase constraints on each of the finite impulse response (FIR) filters 

of the array processor. The problem is formulated as a convex optimization problem 

and two implementations are presented which can be solved efficiently in polynomial 

time using well-established interior point methods. We also present an adaptive im­

plementation for our robust wideband beamformer and a first- or second-order EKF 

can be used to estimate the beamformer weight vector adaptively with low computa­

tional complexity per iteration. Simulation results are presented showing a superior 

performance of the proposed algorithms and an improved robustness against various 

types of mismatches compared to earlier approaches.

Furthermore, we develop a state-space approach to the blind multiuser detection 

problem with robustness against arbitrary mismatches in the desired user signature. 

Our solution is obtained adaptively using a second-order EKF and requires the same 

computational complexity as that of the previous non-robust recursive least squares 

(RLS)-based algorithms. We also develop a state-space approach to the decision- 

directed multiuser detection problem and an algorithm for switching between robust 

blind and decision-directed detectors. The proposed switching algorithm combines

vi
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the advantages of both these detection schemes. It can achieve an output signal-to- 

interference-plus-noise ratio (SINR) close to that of the minimum mean square error 

(MMSE) detector, even in the presence of mismatches in the desired user signature 

and without any need for training. Therefore, it is well-suited to nonstationary en­

vironments where users repeatedly enter and leave the system making the cost of 

training unaffordable.

vii
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Chapter 1

Introduction

In the early days of development of statistical signal processing techniques, the em­

phasis was on the derivation of optimum schemes designed to maximize the output 

signal-to-interference-plus-noise ratio (SINR) or minimize the bit error rate (BER) in 

a specific signal environment. However, optimum signal processing algorithms often 

suffer from drastic performance degradation in the presence of even small deviations 

from the nominal model assumptions upon which they were derived. This observa­

tion was the motive for searching for robust signal processing techniques; that is, 

techniques with good performance under nominal conditions and acceptable perfor­

mance for any signal environment within a certain pre-specified uncertainty set [61]. 

Thus, in seeking robust signal processing techniques it is recognized that a single pre­

cise characterization of the operating environment is an unrealistic assumption, and 

therefore a set of operating conditions has to be considered and taken into account 

while designing practical signal processing schemes.

One of the frequently used assumptions for the signal environment is that it is 

stationary and ergodic, i.e., with fixed statistics over time. This assumption has 

simplified the derivation of optimum statistical signal processing techniques as all the 

signal statistics can be evaluated from a single realization of the process. However,

1
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in practical applications this assumption is not valid. Therefore, there is a need 

for adaptive signal processing algorithms that can be updated in real-time with low 

computational complexity and, hence, are suitable for nonstationary environments.

The aim of this thesis is to derive computationally efficient robust algorithms for 

adaptive beamforming and multiuser detection. In this chapter, we will give a brief 

introduction to the array signal processing and multiuser detection areas. We will 

also motivate the objectives of this thesis. At the end of the chapter, we provide an 

outline of the thesis and summarize our main contributions.

1.1 A daptive Array P rocessin g

Array processing is a branch of signal processing that uses sensor arrays to extract 

information contained in spatially-propagating signals. This information content can 

be either the location parameters of the source or the transmitted signal waveform 

itself. The two main fields of array processing are direction of arrival (DOA) esti­

mation and beamforming. The goal of beamforming is to perform spatial filtering 

in order to separate signals that originate from different spatial locations. This is 

achieved by providing different gains to different spatially-propagating signals based 

on their DOAs.

Beamformers can be classified into two categories depending on the way they are 

designed; either data-independent or adaptive. Data-independent beamformers are 

designed such that they approximate a desired spatial response that is independent of 

the operating signal environment. This design objective is similar to that of classical 

finite impulse response (FIR) filter design [86]. On the other hand, adaptive beam­

formers are designed based on the received sensor data or their statistics. The design 

objective of adaptive beamformers is to maximize the output SINR of the array which 

is equivalent to minimizing the output power due to noise and signals arriving from

2
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directions other than the desired signal direction while preserving the desired signal.

Adaptive beamforming dates back to the work of Howells and Applebaum that 

started in mid-1950s [4], [58]. In 1957, Howells developed a two-channel adaptive 

sidelobe canceller system which can suppress a single sidelobe jamming source. In 

1966, Applebaum devised the control logic for computing the weights of a general 

Howells adaptive array. Since then, adaptive beamforming has received significant 

interest in the literature and has been the subject of numerous research papers and 

books (see [21], [49], [50], [65], [109] and the references therein).

Adaptive beamforming has played an important role in many areas such as radar, 

sonar, and wireless communications. In what follows, we briefly describe some adap­

tive beamforming applications.

Radar

Radar systems are used in many contexts, including air traffic control, police detection 

of speeding traffic, and military reconnaissance. The term “RADAR” was coined in 

1941 as an acronym for RA dio Detection And Ranging, and has since entered the 

English language as a standard word losing the capitalization in the process. Most 

radar systems are active, i.e., antenna arrays are used to transmit electromagnetic 

energy and to listen for the echo of the transmitted signal. The transmitted signal 

can either be a continuous wave or a pulse modulated signal. Adaptive beamforming 

is widely used in radar systems to enhance the detection of target echoes through 

interference/jamming cancellation and ground clutter suppression. Examples can be 

found in surface wave over-the-horizon radars used for coastal surveillance [35], [100] 

and airborne moving target indication radars used to detect moving targets [10].

3
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Sonar

The use of sonar systems to detect underwater targets dates back to the World War I 

[111]. The word “SONAR” was first used in the World War II as an acronym for 

SOund, NAvigation, and Ranging. Sonar systems use hydrophones that are capable 

of converting underwater acoustic energy to electric signals. They can be either pas­

sive or active. The theory of active sonar has much in common with radar. However, 

the design of sonar systems is more sophisticated than that of radars due to the com­

plicated propagation properties of the underwater acoustic wavefield [13]. Adaptive 

beamforming is usually applied to sonar systems as a preprocessing step to suppress 

strong interferers [46]. Hydrophone array-based sonar has been successfully applied 

to real data as reported in [46], [66], [75], and [96].

W ireless com m unications

The increasing demand for mobile communications in the last two decades has moti­

vated the search for new techniques to increase the capacity, reliability, and quality of 

service of wireless communication systems. One approach that has shown real promise 

of substantial improvements is the use of spatial processing with adaptive antenna 

arrays [50]. Adaptive beamforming is capable of separating signals transm itted at the 

same time and in the same frequency band, provided that they are separated in the 

spatial domain [72], In addition, the use of antenna arrays in mobile communications 

offers the ability to extend the range of coverage, combat fading, and provide more 

robustness against co-channel interference by focusing the beam in the direction of 

the desired user and nulling-out the interference [21], [49], [95],

4
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1.2 M ultiuser D etectio n

Multiuser detection (also known as co-channel interference suppression) deals with 

the demodulation of mutually interfering digital streams of information. Cellular tele­

phony, satellite communications, and high-speed data transmission lines are examples 

of communication systems that suffer from multiple access interference (MAI) [114]. 

The interference between the received signals may originate from the unideal char­

acteristics of the transmission medium as in the case of orthogonal code division 

multiple access (CDMA) systems, time division multiple access systems, and orthog­

onal frequency division multiplexing (OFDM), or it may be an integral part of the 

multiplexing method as in the case of non-orthogonal CDMA.

When CDMA was first commercially launched in 1995, the presence of MAI at 

the receiver was simply neglected on the grounds that its statistical properties would 

be similar to additive white Gaussian noise, and thus the use of a single-user matched 

filter to combat such interference would be nearly optimal. In order to limit the 

multiple access interference, very accurate and fast power control is required in the IS- 

95 system to keep the levels of the received signals within a fraction of one decibel [71]. 

Unfortunately, ultra-fast ultra-accurate power control is not always feasible or cost- 

effective. In the last two decades, a large number of results under the name “Multiuser 

Detection” has shown that the philosophy of combatting MAI with power control only 

is inefficient and that full channel utilization can only be achieved by the additional 

use of signal processing techniques such as multiuser detection and beamforming [60], 

[122], Multiuser detection exploits the structure of the MAI to increase the efficiency 

with which channel resources are utilized, hence increasing the capacity, coverage, 

and quality of service of multiple access communication systems [113].

5
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1.3 O verview  o f th e  T hesis

1.3 .1  M o tiv a tio n  and  o b jectiv es  o f  th e  th esis

Most signal processing techniques for adaptive beamforming and multiuser detection 

are based on the following assumptions:

1. The received signal environment is precisely known at the receiver.

2. The signal and noise processes are stationary over the observation interval.

However, in practical operating environments these assumptions are rarely valid, 

and existing conventional signal processing algorithms suffer from significant perfor­

mance degradation due to their high sensitivity to any deviations from these assump­

tions. In this section, we will briefly discuss a few problems tha t occur in practical 

adaptive beamforming and multiuser detection systems.

M ism atches in the signal environm ent

Classical adaptive beamforming techniques are based on the assumption that the 

signal propagation model and array characteristics are precisely known. However, 

in practical situations many mismatches exist between the presumed signal environ­

ment and sensor array characteristics, and the actual ones [40]. Examples of such 

mismatches include imperfect knowledge of the DOA of the desired signal (look di­

rection errors) [47], imperfect array calibration and distorted antenna shape [59], and 

unideal channel propagation effects such as wavefront distortions due to propagation 

in inhomogeneous media and source local scattering [42]. The performance of clas­

sical adaptive beamforming techniques is known to degrade severely in the presence 

of even slight mismatches of any of these types as the beamformer interprets the de­

sired signal as interference and accordingly suppresses it by adaptive nulling instead 

of preserving it [36], [41]. Hence, robust approaches to adaptive beamforming are of

6
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great importance. Most existing approaches to robust adaptive beamforming use ad- 

hoc modifications of the optimum adaptive beamforming techniques to guard against 

performance degradation under certain mismatch scenarios such as look direction er­

rors or sensor location errors [12], [14], [34], [38], [106], [124]. There is a need for 

mathematically rigourous adaptive beamforming algorithms that can combat multi­

ple mismatches in the operating environment and provide an amount of robustness 

directly related to the amount of environmental mismatches.

Quite a similar problem is typical for multiuser detection. In CDMA systems, 

each user is assigned a specific signature that uniquely identifies him from other users. 

There are two main approaches to multiuser detection; training-based and blind de­

tection. In training-based techniques, a data sequence (which is already known by 

the receiver) is sent by the transm itter and is used to estimate the receiver weight 

vector [81]. This causes a waste of the transmission bandwidth. On the other hand, 

blind multiuser detection does not need any training. It requires only the knowl­

edge of the desired user signature and precise timing [57]. However, it suffers from 

severe performance degradation for even slight mismatches between the presumed 

and actual signatures of the desired user. These mismatches frequently arise due to 

the effect of propagation through the physical channel [24], For example, the receiver 

might assume that the desired user signature is the nominal transm itted one, whereas 

the actual received signature may contain additional multipath components or other 

types of channel-related signal distortion. Existing approaches that provide robust­

ness against these mismatches are ad-hoc and frequently do not yield satisfactory 

performance [24], [45], [57]. More work is required to develop multiuser detection 

algorithms that do not require training and can maintain high output SINR even in 

the presence of uncertainties in the desired user signature.

7
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N onstationary environm ents

A typical cause of performance degradation in adaptive signal processing algorithms 

is the nonstationary nature of the operating environment which can be attributed 

mainly to the effect of multipath propagation. Even small source motion can lead 

to different path delays and thus the overall channel response can change dram at­

ically over time. This effect is more pronounced for rapidly moving sources as the 

propagation loss along each path will vary and induce variations in the received sig­

nal power. Note that moving sources are quite typical for radar, sonar, and wireless 

communications [44], [55], [94]. The same situation occurs if the receiver is moving, 

e.g., towed hydrophone arrays in sonar [75], or moving antenna platforms in airborne 

radar [10], [55]. Moreover, these systems are liable to abrupt environmental changes 

such as the powering up of a new user or interference signal which can cause drastic 

performance degradation.

This nonstationary behaviour of practical operating environments limits the num­

ber of available data samples required for “training” signal processing algorithms [91]. 

Furthermore, it may happen that these algorithms are not able to adapt fast enough 

to follow the environmental changes, and as a result a considerable amount of inter­

ference is not filtered out causing severe performance degradation [43], [53]. Hence, 

computationally efficient and rapidly convergent algorithms are needed that can be 

implemented in real-time and easily updated every time a new data sample is received.

1 .3 .2  T h esis  o u tlin e

The main objective of this thesis is to derive mathematically rigourous and computa­

tionally efficient algorithms for adaptive beamforming and multiuser detection that 

are robust against mismatches between the presumed and actual signal environments. 

The main body of the thesis consists of Chapters 3 to 6. In what follows, we give a

8
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brief overview of our work.

In Chapter 2, we overview the conventional techniques for adaptive beamforming. 

We present the signal model that has been widely used in array signal processing over 

the last few decades. We discuss several popular adaptive beamforming techniques 

which are optimal when the array and signal characteristics are precisely known. 

Next, we review some classical robust beamforming approaches which can maintain 

satisfactory performance in the presence of certain mismatches between the presumed 

and actual signal environments. At the end of the chapter, we discuss real-time imple­

mentations of adaptive beamforming algorithms that are suitable for nonstationary 

environments.

We start Chapter 3 by revising the recently proposed narrowband robust mini­

mum variance distortionless response (MVDR) beamformer [116] which is one of the 

theoretically rigourous and most powerful approaches to robust beamforming in the 

presence of arbitrary mismatches in the desired signal steering vector. Next, we de­

velop a Kalman filter-based technique to implement the robust MVDR beamformer 

online. The proposed beamformer can be updated whenever a new data snapshot 

is received and requires less computations than those required for earlier implemen­

tations of the MVDR beamformer. Furthermore, we propose two modifications of 

our Kalman filter-based beamformer which additionally account for abruptly chang­

ing nonstationary environments. At the end of the chapter, we provide simulation 

results that compare our Kalman filter-based implementation of the robust MVDR 

beamformer to its original implementation of [116].

In Chapter 4, we present a novel wideband beamformer with robustness directly 

related to the amount of uncertainties in the array manifold. Our beamformer ex­

tends the work in [116] to the more general wideband case and avoids the suboptimal 

subband decomposition approach of [118]. The proposed beamformer prevents the

9
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cancellation of the desired signal components even in the presence of array mani­

fold mismatches and maintains a linear phase response towards the desired signal. 

The resulting problem is solved using worst-case performance optimization and is 

shown to be convex. We also provide two implementations for our beamformer which 

can both be solved with polynomial complexity using well-established interior point 

methods [83]. Simulation results are presented showing an improved robustness of 

our beamformer against various mismatches compared to the earlier techniques.

In Chapter 5, we modify the proposed wideband beamformer to derive an online 

implementation suitable for nonstationary environments. We use a state-space mod­

elling approach similar to tha t we adopted in Chapter 3, and an extended Kalman 

filter (EKF) is used to solve for the optimal weight vector adaptively with a reduced 

computational cost compared to the previous interior point methods-based imple­

mentations. Simulation results are presented validating a superior performance of 

our algorithm both in stationary and nonstationary environments.

In Chapter 6, we consider the problem of robust multiuser detection. First, we de­

velop a state-space approach to the blind multiuser detection problem with robustness 

against arbitrary mismatches in the desired user signature. Our solution is obtained 

using a second-order EKF and has the same computational complexity as that of 

previous non-robust online algorithms. We also present a state-space approach to 

the training-based decision-directed multiuser detection problem. Furthermore, we 

develop an algorithm for switching between robust blind and decision-directed de­

tection. Simulation results are presented showing an improved performance of our 

algorithms compared to earlier multiuser detection techniques.

In Chapter 7, we give our concluding remarks and point out some important future 

research directions.

10
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1.3 .3  C on trib u tion s and  re la ted  p u b lica tion s

The contributions of this thesis can be summarized in the following developments:

1. A novel computationally efficient online implementation for the robust MVDR 

beamformer which is well-suited to nonstationary environments.

2. A new mathematically rigourous wideband beamforming algorithm with robust­

ness against multiple mismatches in the array manifold.

3. A computationally efficient real-time robust wideband beamforming algorithm.

4. A computationally efficient recursive implementation of the bind multiuser de­

tector with robustness against desired user signature mismatches.

5. A novel algorithm for switching between robust blind and decision-directed 

multiuser detection.

The contents of Chapter 3 have been published in one full IEEE Transactions 

on Signal Processing paper [27]. An earlier exposition of some parts of Chapter 3 

was also presented at the IEEE Workshop on Statistical Signal Processing [29]. The 

contents of Chapter 4 have been presented in part at the IEEE Workshop on Statistical 

Signal Processing [28] and the full contents of the Chapter have been submitted to the 

IEEE Transactions on Signal Processing. Some of the contents of Chapter 5 have been 

presented at the IEEE Workshop on Sensor Array and Multi-channel Processing [31], 

and a full journal version is currently under preparation. The contents of Chapter 6 

have been presented at the IEEE International Workshop on Computational Advances 

in Multi-Sensor Adaptive Processing [30], and have been also accepted for publication 

in the IEEE Transactions on Wireless Communications [32],
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Chapter 2 

Conventional A daptive  

Beam form ing

2.1 In troduction

Adaptive beamforming has received considerable attention during the last decades, 

particularly in the fields of speech acquisition, sonar, radar and, more recently, in 

wireless communications [65], [110], [112]. In all these applications, beamforming 

(spatial filtering) is used to distinguish between the desired signal, interference, and 

noise based on the spatial properties of each. In order to enable the beamformer to 

respond to an unknown interference environment, it has to be adaptive, i.e., it can 

extract the information about the environment from the received data and filter out 

the interference and noise while preserving the desired signal.

We start this chapter with an overview of array processing fundamentals, including 

spatially-propagating waves and the array signal model widely used in the literature. 

Next, we discuss main adaptive beamforming techniques which are optimum when the 

array and signal characteristics are precisely known. Both narrowband and wideband 

optimum beamforming approaches are considered. We also review the most important
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classical robust beamforming approaches that can maintain satisfactory performance 

in the presence of mismatches between the presumed and actual signal environments. 

At the end of the chapter, we discuss online implementations of adaptive beamforming 

algorithms that are suitable for nonstationary environments.

2.2 A rray Signal M odel

Modern approaches to array signal processing are model-based, in the sense that they 

rely on certain assumptions about the observed data [65], [109], [112]. In this section, 

we present the array signal model commonly used in adaptive beamforming. We start 

with discussing the wave equation and its solution in the case of a spherical wave 

propagating in a homogeneous medium. Next, we introduce the concept of sensor 

arrays that spatially sample the wavefield at discrete locations. In most practical 

beamforming applications, the array sensors are placed far enough from the wavefield 

source and, hence, the propagating wave appears as a plane wave. We discuss the 

plane wave solution to the wave equation which will be used throughout this thesis. 

Finally, we present the narrowband array signal model which is applicable when the 

bandwidth of the desired signal is small compared to its carrier frequency.

2.2 .1  P ro p a g a tin g  w aves

A wave is defined as a disturbance that propagates from one location to another. This 

disturbance might occur in the electric and magnetic fields as in the case of electro­

magnetic waves, in the air pressure as in the case of acoustic waves propagating in 

air [33], or in the ground displacement as in the case of seismic waves [99]. Propagat­

ing waves are functions of space and time. Their propagation can be characterized
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by the wave equation [33, p. 240], [99, p. 27]

2 . 1 d2s(t, r )
=  (2 .1)

where y 2 is the Laplacian operator [64, p. 493], s( t ,r)  is the intensity of the distur­

bance (signal) observed at time t  and in the location specified by the vector r ,  and c 

is the wave propagation velocity in the medium.

In the case of a spherically symmetric sinusoidal wave with frequency / 0 propagat­

ing from the origin in a homogeneous medium without any reflectors or boundaries, 

the solution of the wave equation is given by [33, p. 152]

s(t, r) = (2-/ot-«r) ^ .2 )

where j  = \ / —l, do is the amplitude of the wave at unit radius, r  is the distance from 

the origin, and k is the wavenumber. The distance travelled by the wave during one 

period T0 = l / f 0 is denoted by the wavelength A, where

A =  cT0 =  - f  =  — . (2.3)
Jo «

On the other hand, when the propagating wave contains multiple frequencies, the 

solution of the wave equation can be expressed as [33]

s ( t , r ) =  !  M l ^ ft~Kr)df. (2.4)
7 —00 t

where A>(/) is the Fourier transform of the disturbance signal at unit radius.

2.2 .2  Sensor arrays

Sensor arrays are composed of multiple sensors that are located at different points 

in space. They can be used to filter the received signals by exploiting their spatial

characteristics. This is achieved by linearly combining the outputs of the sensors

using complex-valued weights so that the desired signal arriving from a particular
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direction, or a set of directions, can be enhanced by constructive combination while 

attenuating the remaining signals by destructive combination.

Let us consider an array of M  sensors. The m th sensor location is defined by the 

position vector

I'm

where (-)T denotes the vector transpose. The sensors spatially sample the propagating 

wave at locations { r m} ^ =1. The M-dimensional vector containing the output signal 

of the array sensors is given by

x ( t )  =  [ x i (t, n ) ,  x 2(t, r 2) , . . . ,  x M(t, r M)}T (2.6)

where x m( t , r m) is the output of the m th sensor. If there are J  + 1 emitting sources, 

then we can write the output of the m th sensor as

J+i
•Xm(f i Tm) ^   ̂ , r*m) -j- nm(t) (2.7)

i=1

where S i ( t , rm) is the amplitude of the ith  wave at the location r m , 6m (©0 is the 

response of the m th sensor towards the signal received from the ith  source, 0 ,  is a 

parameter vector of the ith  wave which can include its frequency, DOA, polarization, 

etc., and nm(t) is an additive noise term that represents the background and/or 

thermal noise associated with the m th sensor.

Usually, we assume that the sensors are identical and omnidirectional and that 

their response is constant over the frequency band of the received signal [82, p. 11]. 

Thus, 6m(0 j) are constant and they can be omitted from (2.7). Therefore, we can 

write the output signal of the m th sensor as

J+1

x m( t , r m) = ' ^ 2 s i ( t , r m) + n m(t). (2.8)
i=1
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2 .2 .3  P la n e  w aves

A plane wave is characterized by the condition that the disturbance is constant in 

magnitude and phase on planes perpendicular to the direction of propagation. If the 

array sensors are placed at sufficiently large distance from the emitting source, then 

the wavefront of the propagating wave becomes flat enough that a plane wave approx­

imation becomes locally valid. This far-field, plane wave approximation is accurate 

when ro L \/A  [101, p. 229], where r 0 is the distance between the source and the 

array center, and L a is the array aperture, i.e., the maximum distance between any 

two sensors. Using this plane wave approximation, the solution to the wave equation 

in (2.1) at time t and location r  for a sinusoidal wave with frequency / 0 is given 

by [99, p. 31]

s(t ,r)  = aej (27rfot~KTr) (2.9)

where a is the amplitude of the wave and n  = [kx> Ky, kz]T is the wavenumber vector 

that determines the direction of propagation of the plane wave and whose magnitude 

is equal to the wavenumber. Therefore, we can write the wavenumber vector as

2 7T
k  =  ^ - u  (2 .10)

A

where u  is a unit vector in the direction of propagation of the wave.

Assume that a plane wave impinges on an M -sensor array. Let s(t) denote the 

signal that would be received by a virtual noiseless sensor placed at the origin. The 

output signal of the m th sensor can then be written as

f ' r n )  & ( t  T~m) 3“ ^bn(^)

where
UTrm (0 1 ^

Tm =-------------- (2.12)
c

is the time required for the plane wave to travel from the origin of the coordinate 

system to the location of the m th sensor.
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SensorM

Planewave
wavefronts

Sensor 1 J

X

Figure 2.1: Plane wave incident on a ULA.

To illustrate the above model, let us consider the uniform linear array (ULA) 

shown in Figure 2.1. The sensors are placed along the z-axis at locations zm =  (m — l)d, 

where d is the array inter-element spacing. Thus, the location of the m th sensor is 

given by the vector

r m — [0, 0, (m — l)d]T . (2.13)

Assume there is only one plane wave arriving from the direction specified by the 

vector u  = [cos(</>) cos(9), sin(0) cos(9), sin(0)], where (f> and 6 are the azimuth and 

elevation angles, respectively. Therefore, the propagation delay incurred by the wave
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to travel from the first sensor to the m th sensor is given by

[cos(0) cos(0), sin(0) cos(0), sin(f?)] [0,0, (m — 1 )d]T
c

(m — l)dsin(0)
(2.14)

c

and the output of the m th sensor is

CO =  S
(m — l)dsin(0)

c  ̂"t~ U.m(0" (2.15)

2 .2 .4  N arrow band  signal m odel

In many practical array processing applications, a typical assumption is that the 

information bearing signal is narrowband, i.e., the signal bandwidth is much smaller 

than the carrier frequency. Let us consider a single carrier-modulated plane wave 

impinging on an M -sensor array. We can write the noise-free complex bandpass 

signal observed at the m th sensor as

where s(t) is the complex bandpass signal received at the origin of the coordinate 

system, s(t) is its informative (baseband) complex envelope, and / 0 is the carrier 

frequency. The Fourier transform of sm(t) is given by

where S ( f )  is the Fourier transform of s(t).

Following the reception of the spatially-propagating signal by the m th sensor, the

j 2 i r f o ( t - T m ) (2.16)

S U f )  =  S ( f  - (2.17)

signal is down-converted to baseband before sampling [65]. We can write the Fourier 

transform of the comp lex-valued down-converted signal sm(t) =  sm{t)e~j ‘2'Kf°i as

(2.18)
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Using the narrowband assumption B  <C fo where B  is the signal bandwidth, we 

can approximate Sm( f ) as

Sm(f)  ~  S ( f ) e - j2^ .

Therefore, taking the inverse Fourier transform of (2.19) we can write

Sm(t) ~  s(i)e~J'2ir-ft)Tm.

(2.19)

(2 .20)

Comparing (2.16) and (2.20) we can notice that the narrowband assumption im­

plies that the baseband signal s(t) remains almost constant during the time required 

by the propagating wave to travel across the array aperture, i.e., B r m <§C 1 and 

s(t) «  s ( t - T m ).

Therefore, using (2.20) we can write the vector containing the output of the M  

sensors as

p - j 2 7 r / o T i

x(t) = s(t)
0-j2nf0T2

-j2nforM

+  n(t)

(2 .21)

where n(t) = [ni(t), n 2( t ) , . . . , riM(t)]T is the vector of complex baseband noise, 

and a ( / 0, r )  =  [e~j2'n’f°T1, e~j2'jrf°T2, . . . ,  e~j2'irfoTM]T is the steering vector (also called 

the array manifold vector) associated with the frequency / 0 and the delay vector 

T — bij t 2, ■ ■ ■, tm]T■

Let us consider the ULA described in Section 2.2.3. If there are J  + 1 narrowband 

waves impinging on the array from the directions specified by the elevation angles 

then using the principle of superposition we can write the array output

vector as
. / + 1

x(t) = ^ s i (t)a(6)i) + n ( t ) (2 .22)
2 =  1
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is the arraywhere a(6»i) =  1, e~j2nfoi sin(^), . . . ,  T

steering vector corresponding to the ith  wave where we have dropped its dependence 

on the frequency due to the narrowband approximation used.

We can also write (2.22) in matrix form as [65]

x(t) = A (0)s(t) +  n ( t ) (2.23)

where

s(t) = [si(t),s2( t ) , . . . , s J+1(t)}T (2.24)

is the vector containing the waveforms of the J  + 1 baseband signals,

9 = [ 9 1,02, . . . 6 j+1]t  (2.25)

is the vector containing the DOAs of the J  + 1 signals, and

A(0)  = [0 (0 0 ,0 (0 2 ),..., o(0J+1)] (2.26)

is the M  x L array response matrix which is usually full rank given that the steering 

vectors correspond to different DOAs [77].

2.3 O ptim um  A daptive B eam form ing

The main objective of adaptive beamforming is to extract the information content 

of the signal-of-interest in the presence of (strong) interferers and background noise 

[79]. This information content can be a message contained in the signal, such as 

in wireless communication applications [94], or some informative parameters of the 

signal such as in radar and sonar [78]. Adaptive beamforming, in its most general 

form, is done by combining the weighted outputs of different sensors. The weights are 

selected adaptively according to the received sensor data such that the desired signal 

is enhanced by constructive combination and the interference signals are suppressed
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by destructive suppression. In this way, the beamformer acts as a spatial filter and 

can be thought of as casting a beam in the direction of the desired signal with its 

nulls in the directions of the interferers [112]. In this section we will review some 

classical adaptive beamforming approaches for narrowband and wideband signals.

2 .3 .1  N arrow band  b eam form in g

Figure 2.2 shows a narrowband beamformer. The signal received by the ith  sensor is 

sampled with the sampling frequency f s — 1 /T s where Ts is the sampling interval. We 

denote the Arth sample of the received signal vector by x(k).  The signal received by 

the ith  sensor is weighted by w* where (•)* denotes the complex conjugate operator. 

The output of the beamformer at the Arth time instant is given by

y{k) = w Hx ( k ) (2.27)

where w  =  [wi , u>2, • • •, u>m ]T is the M  -dimensional vector containing the weights of 

the beamformer and (-)H denotes the Hermitian transpose.

The observation vector x(k)  typically contains one desired signal, J  interference 

signals, and white noise. Therefore, we can write

j
x{k)  =  s0(k)a(6s) +  ^  si(A:)a(6>i) +  n(k)  (2.28)

1 = 1

where 6S is the DOA of the desired signal, 6t is the DOA of the xth interference 

signal, s0(k) is the desired signal waveform, and Si(k) is the ?'th interference waveform. 

The desired and the interference signals are assumed to have zero mean and to be 

stationary and mutually independent [7], [112].

The total output power of the beamformer is given by E |  ^^^(A :) |2|  =  w HR xw,

where E{-} denotes the statistical expectation and R x = E [ x ( k ) x H(k)} is the

covariance matrix of the received signal vector.

22
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Wi

Figure 2.2: Narrowband beamformer.

The output SINR of the beamformer is defined as the ratio between 

desired signal power and the output power due to interference-plus-noise. 

by

SINR
E ̂ Y m = \ S i ( k ) w H a ( 0 i ) +  w Hn ( k ) 

a(6>s) |2as \wH
w HR i+nw

where a^ is the received power of the desired signal at each sensor, and

H'

-R-i+n E { ( £  Si(k)a(9i) +  n (k )J  Si(k)a(6i) +  n(k)

is the covariance matrix of the interference-plus-noise.

23

the output 

It is given

(2.29)

(2.30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical &; Computer Engineering

Several criteria exist for selecting the beamformer optimal weight vector [79]. 

One of the well-known adaptive beamforming algorithms for narrowband signals is 

the MVDR algorithm [7], [23], [40], [79]. This algorithm minimizes the output power 

of the beamformer due to interference-plus-noise subject to a constraint tha t provides 

a distortionless response towards the desired signal. The problem can be formulated 

as [116]

min w HR i +nw  s.t. w Ha(ds) =  1. (2-31)W

The solution to the above optimization problem can be simply evaluated using the 

method of Lagrange multipliers as [40]

R *Ua (e»)
a 11 {0 s) R i l na(Q s)

An equivalent formulation for the MVDR beamformer can be derived by minimiz­

ing the total output power of the array subject to the same distortionless response 

constraint in (2.31). The problem can be written as

min w h R x w  s.t. w Ha(0s) =  1. (2.33)
W

Minimizing the total output power of the beamformer while preserving the desired 

signal is equivalent to minimizing the output power due to interference-plus-noise. 

This can be seen by writing the cost function of (2.33) as

w h R x w  =  o2sw H a(Os)aH (Qs)w  +  w HR i +nw

= a 2s + w HR i+nw  (2.34)

and thus the two optimization problems in (2.31) and (2.33) are equivalent and have 

the same solution in (2.32).

In practical applications, neither the interference-plus-noise covariance matrix nor 

the data covariance matrix is known at the receiver. Therefore, the sample covariance

24
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matrix
1 Na

=  W  x (k )x H (k ) (2 -35)
s k=1

is used instead of the true covariance matrix, where N s is the number of available 

training snapshots [40]. The resulting beamformer is known as the sample matrix 

inversion (SMI) beamformer [41]. It is well-known tha t in the absence of the desired 

signal in the beamformer training data, the SMI beamformer converges rapidly to the 

optimal SINR of the MVDR beamformer which is given by

SINRopt =  a 2sa H(0s)R7^na(0s) (2.36)

so that if the number of training snapshots N s >  2M , then the average loss relative to 

(2.36) is less than 3 dB [23]. However, if the desired signal is present in the training 

data, the performance of the SMI beamformer can degrade severely [41].

Moreover, in practical scenarios, the actual desired signal steering vector may not 

be precisely known. In such cases, an estimate a(00) is used instead of the actual 

steering vector a(9s), where 9q is the presumed DOA of the desired signal. This will 

be further discussed in Section 2.4.

The beamformer response (also termed the beam pattern [109, p. 33]) is defined

as the magnitude and phase response to a plane wave as a function of its DOA. We

can write the beamformer response to a narrowband plane wave arriving from the 

elevation angle 9 as

H{9) = w Ha(9). (2.37)

The magnitude response (in decibels) of a beamformer,

G(0) =  2Ologlo (|ff(0)|) (2.38)

is usually plotted against the DOA to demonstrate the spatial selectivity of the beam- 

former.

25
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2 .3 .2  W id eb an d  b eam form in g

If the desired signal bandwidth is greater than 1% of its center frequency, then the 

dependence of the array manifold vector on frequency can not be ignored. Thus, the 

approximations in (2.19) and (2.20) are no longer valid and the array signal model in 

(2.11) has to be used. Moreover, the beam pattern of the narrowband beamformer 

in Figure 2.2 changes with frequency and, therefore, more sophisticated beamforming 

schemes are required to produce frequency-invariant beam patterns [98]. In this 

section, we will review two of the most common adaptive beamforming approaches 

for wideband signals.

Presteering
delays

X L

2,7.2 , 2 ,

'M, 1

Figure 2.3: Presteered broadband array processor.
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2.3.2.1 T im e dom ain beam form ers

Figure 2.3 shows a time domain presteered wideband array processor, commonly 

referred to as Frost’s beamformer [84], The front-end of the processor consists of 

wideband presteering delay filters with the delays {T*}^ whose function is to steer 

the array towards the desired signal direction so that all its frequency components 

appear in-phase across the array after the presteering filters. The output signal of 

the presteering delays is sampled at the rate f s — 1 /T s samples/second, where f s is 

selected to be higher than or equal to 2 f u to avoid aliasing in the frequency domain and 

f u is the maximum frequency of the desired signal [37, p. 14]. Each presteering delay 

filter is followed by an FIR filter of length L taps, and the output of the beamformer 

is produced by adding the outputs of the M  FIR filters.

We will denote the M-dimensional data vector at the output of the presteering 

delays at the kth. time instant as x(k )  — [xi(k),X2 (k), ■ ■ ■ ,XM(k)]T■ The stacked 

data vector defined as x{k) — [xT(k), XT(k — 1) , . . . ,  XT(k ~  T +  1)]T contains L 

delayed presteered data vectors. We assume that processing is performed in the 

passband (without down-conversion to baseband), and therefore, the array data are 

real-valued [12], [52]. The £;th sample of the beamformer output y(k) is given by the 

inner product of the stacked data vector x(k)  and the real valued M L-dimensional 

stacked weight vector w  with (w)M(i-i)+m =  u m,i where a;mj/ denotes the weight at 

the Ith tap of the m th FIR filter, i.e.,

y(k) =  w Tx ( k ) (2.39)

where w T =  \u )\, ■ ■ ■, w j ] . The individual weight vectors u>i are termed the

temporal weight sets as they multiply time delayed versions of the presteered data 

vector. Their scalar components are given by oji = [uq^co^, • • • ,um ,i]T■

Let us consider a linear array whose sensors are placed along the z-axis at locations 

l- The number of sensors is chosen to meet the Nyquist criterion for spatial

27
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sampling, i.e., the sensors are placed densely enough so that the received signal is 

spatially sampled at a minimum of 2L a / u/ c positions. For a uniformly-spaced linear 

array, this corresponds to the condition that the sensors are placed at a distance less 

than or equal to c/(2 fu) [11]. The response of the array to a complex sinusoid with 

the frequency /  and the arrival angle 9 is given by

H( f ,  9) = w T (d( f )  ® ( T( f ) a ( f ,  9)))  (2.40)

where ® denotes the Kronecker product,

d( f )  =  [ l ,e - j27r/T% .. . ,e - J'27r/(i- 1)Ta]T (2.41)

T ( f )  = d iag{e-j27r/Tl, . . . , e - j27r/TM} (2.42)

a( f , 9)  =  [ ^ M ( e) , . . . , e i27r/™(0)]T (2.43)

TlW =  (2.44)

Note tha t the array response is a 2-dimensional function of the frequency and DOA. 

We can define the power response (in decibels) of the beamformer as a function of 

the arrival angle only as

P(e)  =  101og10 p , ( J ) \ wT (d( f )  ® (T (/)o ( /,« ))  )|2dA (2.45)

where pe(f)  is the power spectral density of the wideband signal arriving from the 

direction 9.

The received signal vector consists of the desired signal, J  interference signals, 

and white noise. Therefore, we can write

*12.
2

x(k)  =  / A„ , ( f ) ( d ( f ) <S ( T( f ) a ( f , e , ) ) ) d f

J .i

+ E  I ,  A ‘< ( f ) ( d ( f ) ® ( T ( f ) a V,  0, )))df  + n[k)  (2.46)
• i u ~ls- 
1 = 1  2
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where Ae(f )  is the Fourier transform of the signal arriving from the direction 6. 

Following the definition of the output SINR in Section 2.3.1, we can write the output 

SINR of the wideband beamformer as

S I N R = ^ ^  (2.47)w 1 R i+nw

where R s is the covariance matrix of the desired signal which is given by

R J I  Ps, ( /)  (<*(/) ® ( T ( f ) a ( f , ».))) (d ( f ) 0  ( T( f ) a ( f ,  0,)) f d f .  (2.48)3

~*2

Using the assumption that the desired signal, interference signals, and noise are mu­

tually independent, we can write the interference-plus-noise covariance matrix as

Bi+» = £  /  ’ P s , ( f ) W )  ® W W M ) ) ) ( d ( f )  0  ( T ( f ) a ( f , e , ) )  ) Hd f  + o i l  ML
i = l •'“'f'

(2.49)

where is noise power at each sensor, and the data covariance matrix is given by

R x =  R s  +  Ri+ n• (2.50)

The function of the presteering delays is to enable the beamformer to identify the 

desired signal. They are selected so that the signal arriving from the presumed look 

direction produces identical (phase-aligned) signals at the output of the M  presteering 

delay filters, i.e.,

T ( / M / A )  =  1m V / e  [/(,/„] (2.51)

where fi is the lowest frequency of the desired signal.

Therefore, the array response towards the look direction signal becomes

H{f ,  &o) =  w T (d ( f ) ® 1M) = w TC 0d( f )  (2.52)

where C 0 6 R ML*L = I L <g>1m, I I  is the L x L identity matrix, and 1m is the 

M-dimensional vector containing all ones.

29
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The weights of the beamformer are selected so that the total output power of the 

beamformer is minimized while simultaneously maintaining a prescribed frequency 

response towards the desired signal. The problem can be written as

w  = arg min w T R xw  s.t. Cj}w  =  h 0 (2.53)W

where the L-dimensional vector h 0 specifies the frequency response of the beamformer 

towards the look direction signal. For example, a distortionless (all-pass) response 

can be provided by selecting the vector h Q as eLr, where e,t is a vector of appropriate 

dimension containing all zeros except for one in the ith  position and L c is the central 

tap index, i.e., Lc — (L + l) /2 . The vector of the beamformer coefficients that satisfy 

(2.53) is given by

w  =  R ? C 0 { C l R - l C Qy l h 0. (2.54)

This beamformer is widely known as the linearly constrained minimum variance

(LCMV) beamformer with gain-only constraints and has been studied extensively 

in the literature [4], [12], [67], [84]. Note that the MVDR beamformer in (2.32) can 

be considered as a special case of the LCMV beamformer when the desired signal is 

narrowband, i.e., L = 1, C o =  a(9s) and ho — 1.

An equivalent formulation of the LCMV problem was developed by Griffths and 

Jim [52], [90]. This formulation, which is known as the generalized sidelobe canceller 

(GSC) beamformer, replaces the constrained minimization problem in (2.53) with an 

unconstrained one, hence, providing more insight into the problem and simplifying its 

implementation [12]. Figure 2.4 shows a block diagram of the GSC beamformer. The 

GSC formulation decomposes the weight vector w  into two orthogonal components 

that lie in the range and null space of the constraint matrix Co, i.e,

w  =  w 0 -  Cq w a (2.55)

where w a e  <CML~L is the adaptive part of w,  and the columns of the full rank 

M L  x (ML  — L)-dimensional matrix C q form a basis for the null space of C 0, i.e.,
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X( k )

IV0

Figure 2.4: The GSC formulation of the LCMV algorithm.

C qC q =  0lx(m l- l) where 0mXn is the m  x n-dimensional matrix containing zeros.

In order for the weight vector w  to satisfy the constraint in (2.53), we have

C qW0 = h 0 (2.56)

and therefore the nonadaptive component w () of the weight vector w  is given by

w Q = C o { C TQC o Y l ho (2.57)

which obviously lies in the range space of the constraint matrix.

The use of the above weight vector decomposition eliminates the need for the 

constraint in (2.53). The unconstrained minimization problem can be written as

min (w 0 -  C q w a)T R x (w 0 -  C^Wa) (2.58)

whose solution is given by [52]

V =  ( C qT R xC q)~1 C qT R xWq.w n (2.59)

The advantage of the GSC formulation comes from the fact that the weight vector 

w a is unconstrained which permits the use of very simple online algorithms to update
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Figure 2.5: Frequency domain wideband beamformer.

the beamformer weight vector once any new data snapshot is received [12], [20], [119]. 

This will be further discussed in Section 2.5.

However, the LCMV wideband beamformer with gain-only constraints and its 

GSC formulation suffer from their sensitivity to array manifold mismatches. Even 

slight array calibration errors can lead to a substantial degradation of the output SINR 

of this beamformer [22], [40], [41], Hence, robust adaptive beamforming techniques 

are needed tha t can maintain satisfactory performance even in the presence of array 

manifold mismatches.

2.3.2.2 Frequency dom ain beam form ers

An alternative approach to the time domain-based spatial processing of wideband 

signals is to decompose the signal into multiple narrowband components through

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical & Computer Engineering

filter banks or the discrete Fourier transform (DFT). This is commonly referred to as 

subband decomposition [26], [118]. Each subband signal can then be modelled as a 

narrowband signal and thus narrowband array processing techniques can be applied 

to each subband. This frequency domain processing approach is more suited to signals 

with very large bandwidths [48].

Figure 2.5 shows a block diagram of the frequency domain wideband beamformer. 

The data received by each of the M  sensors is first transformed to the frequency 

domain through the DFT. The data across the array at each of the N f  subband 

frequencies are then processed by their own narrowband beamformer to produce the 

subband output y(fi)  =  wj.x ( f i ) .  The total array output is then formed by taking 

the inverse DFT (IDFT) of the subband filtered data.

Note that there is an equivalence between the wideband time domain and fre­

quency domain beamformers [112]. The outputs of the subband beamformers {y(fi)}^Ji 

can be made equivalent to the DFT of the output of the time domain beamformer 

in (2.39) with a proper selection of the beamformer weights and appropriate data 

partitioning [48].

2.4 C lassical R obust B eam form ing Techniques

The optimal adaptive beamforming techniques discussed in Section 2.3 are based 

on the assumption that the signal model and the array characteristics are precisely 

known. However, in practical situations many types of mismatches can exist between 

the presumed and actual signal environment and array characteristics. For instance, 

the actual steering vector of the desired signal might be different from the presumed 

one. This mismatch is commonly referred to as “array pointing error” and it can 

happen due to look direction errors or imperfect knowledge of the sensor locations 

or radiation characteristics [62], Another form of model mismatch is the wavefront
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distortions that occur due to propagation in inhomogeneous media or signal multipath 

propagation and scattering [87]. Adaptive beamforming techniques are known to 

be sensitive to such mismatches as the beamformer, in fact, interprets the desired 

signal as interference which results in its suppression [63]. Moreover, even if the 

signal environment and array characteristics are perfectly known at the receiver, the 

performance of adaptive beamforming algorithms can still degrade severely due to 

the finite sample support [36].

Hence, a strong need arises for adaptive beamforming techniques that can preserve 

the desired signal even in the presence of the aforementioned mismatches [41]. In 

this section, we will briefly review some classical algorithms that provide robustness 

against array calibration and manifold errors.

2 .4 .1  D irectio n a l d eriva tive  con stra in ts

One of the very early approaches to allow for some margin of directional mismatch 

between the presumed and the actual desired signal is the use of directional derivative 

constraints. These constraints impose a maximally flat response up to some order Nj  

in the look direction. They are derived by forcing the directional derivatives of the 

power response of the array (p( f , 0 ) =  H(f ,9)H*( f ,9) )  up to the A^-th order to be 

equal to zero in the look direction for all frequencies, that is,

dn
m '-p ( f , e ) =  0 V / e fa fs 

'  2 ’ 2
;n  = 1 , . . .  , N d. (2.60)

In practice, only the first- and second-order directional derivative constraints are 

of practical use, as the use of additional higher-order constraints degrades the beam- 

former interference rejection capability. In [34], Er and Cantoni derived sufficient

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical V Computer Engineering

conditions on the array weight vector for satisfying (2.60). For the linear array struc­

ture described before, the first- and second-order sufficient directional derivative con­

straints are given, respectively, by

constraints were derived. They differ from the sufficient constraints in (2.61) and

(2.62) in that they do not constrain the phase response of the array and are therefore 

insensitive to the array phase-center location [12]. The set of NS first-order derivative 

constraints is given by

on the Ith diagonal above the main diagonal and AT(0) =  diag-fyify), . . .

We can see from (2.61), (2.62), and (2.63) that the sets of sufficient first- and 

second-order derivative constraints and NS first-order derivative constraints are linear 

and can therefore be easily implemented within the LCMV algorithm. On the other 

hand, the NS second-order derivative constraints are nonlinear and nonconvex which 

poses many problems in solving for the beamformer optimal weight vector [105], [106].

2.4 .2  P resteer in g  d elays d erivative  con stra in ts

The use of directional derivative constraints provides robustness against look direction 

errors, yet it does not provide enough robustness against other types of array manifold

(2.61)

(2.62)

where t ( 0 )  = [ t i ( 0 ) ,  t 2 (6Q, . . . ,  tm (0 ) ]T .

In [105], necessary and sufficient (NS) first- and second-order directional derivative

where Ji  is the L x L matrix containing all zeros except for a diagonal of ones located
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mismatches. In [124], a set of constraints referred to as presteering delays derivative

constraints was proposed. These constraints can preserve the desired signal despite

multiple mismatches in the array manifold. They were derived by forcing a maximally-

flat power response in the presteered direction, i.e., all the partial derivatives of the

power response of the array with respect to {Ti}^=x up to the Arpth  order are equal
f -to zero at the selected presteering delay values for all frequencies. This

constraint can be written as

dnp ( f , e )
dT p  dT?2 . . .

=  0 V/(E
Ti=Ti

fa fa 
’ 2 ’  2

, n  1 , . . . ,  Np, Tim 0 , . . . ,  n
M

Y n m = n.
m=1

(2.64)

For the case of first-order presteering delays derivative constraints, only the first- 

order derivatives of the power response are of concern, namely,

dp(f ,  0)
d%

=  0 V / e
Ti=T{

fa fa
'  2 ’  2

(2.65)

NS conditions for satisfying (2.65) were derived in [124] and simplified into a set 

of linear constraints on the weight vector w.  These constraints are given by

h i  (J, -  J j ) )  ® ( l^ O m))rn =  0 Vm =  1, . . . ,M;Z = 1, . . . , L — 1 (2.66)

where is the M  x M  diagonal matrix containing all zeros except for a single 

unity-valued element located at the m th row and m th column.

For the case of an all-pass response, i.e., h0 = exo, the set of NS first-order 

presteering (NS1-PS) derivative constraints reduces to the following set [124]:

e l c(Jl - J f ) ) ® ( l J { n m) ) w  = 0 V m = l , . . . , M ; /  =  l , . . . , L c —1 . (2.67)

Note that these constraints are equivalent to linear phase constraints for each of the 

M  FIR filters of the array processor. This can be easily seen by rewriting (2.67) for
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all m  = 1 , . . . ,  M  and I =  1 , . . . ,  L c — 1 as:

( ( eLcJ i) ® ( ljrn m))«> =  ((e^cJ f ) ® ( 1 ^ 0 m))m

(e Lc+ r ® e m)™ =  ( e l c_ i ® e £ ) w

T________________________ X
e M(Lc+ l - l )+ m W — e M(Lc- l - l ) + m W

Mm,Lc+l  =  ^m ,Lc—l ( 2 .6 8 )

which is the Type 1 linear phase constraint on each of the M  FIR filters of the array 

processor [8 6 ].

2.4 .3  D iagon al load ing

One of the popular approaches to add robustness to the LCMV beamformer against 

various types of array manifold mismatches is the diagonal loading technique [1 ], [2 ], 

[14], [38]. Its key idea is to impose an inequality constraint on the weight vector 

norm [23]. We can write the diagonally loaded LCMV problem as

min w T R xw
'W

s.t. C qW = h 0

w Tw  < 7 di (2.69)

where we have used the sample covariance matrix instead of the true covariance 

matrix. The solution to the above problem has the same form as the solution to the 

LCMV problem in (2.54), but with a diagonal loading term added to the covariance 

matrix, that is,

w  = ( j l x + r]dlI ^  C 0( c l  [ l t x +  77di/) Co) h 0. (2.70)

where the diagonal loading factor r/ai is selected iteratively so that the weight vector 

norm constraint is satisfied [23],
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We can see from (2.70) that diagonal loading is equivalent to injecting white 

noise with the power t]a\ into the data covariance matrix, or, equivalently, adding an 

omnidirectional interferer [15]. It is also clear that diagonal loading guarantees the 

invertibility of the sample covariance matrix even if the number of training snapshots 

is smaller than the dimension of the covariance matrix, and improves the robustness 

of the beamformer against finite sample size. Moreover, it is well-known that diagonal 

loading can improve the performance of the beamformer in scenarios with arbitrary 

mismatches in the array manifold while maintaining a low sidelobe level which makes 

the beamformer robust against unexpected interferers [23].

However, the main disadvantage of the diagonal loading approach is that the 

amount of diagonal loading can not be directly related to the amount of mismatches 

in the array manifold or even to the weight vector norm constraint in (2.69). It is 

often set in an ad-hoc way and typically chosen as 10 [23].

2 .4 .4  E igen sp ace b eam form er

One of the powerful approaches to robust adaptive beamforming for the case of nar­

rowband signals is the eigenspace beamforming technique [18], [36]. This approach 

uses a more accurate estimate of the desired signal steering vector than the classical 

presumed vector a(9o) used in the SMI beamformer. This is achieved by projecting 

the presumed desired signal steering vector onto the signal-plus-interference subspace 

evaluated from the sample covariance matrix through eigen decomposition. Hence, 

we can write the sample covariance matrix as

R x  =  E sA sE f  + E nA nE ^  (2.71)

where E s and E n are the M x ( J + l )  and M  x (M  — J  — l)-dimensional matrices 

containing the eigenvectors of the signal-plus-interference and noise subspaces, re­

spectively, and A s and An are the (J  + l ) x ( J  + 1) and ( M - J - l ) x ( M - J - l )  diagonal.
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matrices containing the corresponding eigenvalues of the signal-plus-interference and 

noise subspaces, respectively.

The weight vector of the eigenspace beamformer can be written as the solution to 

the following problem

min w h R xw  s.t. w H E sEfa(9o)  =  1 (2.72)
W

where E SE ^  is the projection matrix on the signal-plus-interference subspace. The 

solution to this problem is given by [18]

E sA ; l E ? a ( d 0) 
a t i {9Q) E sArs 1E ^ a {9 Q)™ , (2.73)

However, the main disadvantage of this technique is that it is not applicable in 

low signal-to-noise ratio (SNR) scenarios where there is a high probability of subspace 

swapping which can lead to a poor estimate of the desired signal steering vector [107]. 

Moreover, this technique is limited to the narrowband case where the dimension of 

the signal-plus-interference subspace is low and known and can not be directly applied 

to the case of large number of interferers or to the wideband case.

2.5 O nline Im plem entation  o f A daptive  

Beam form ers

As described earlier, the calculation of the optimum weight vector of various adaptive 

beamformers requires knowledge of the second-order statistics of the received data. If 

we assume that the underlying signal processes are stationary and ergodic, then these 

statistics can be calculated from the received data through time-averaging. However, 

in many practical scenarios the received data are nonstationary, i.e., their statistics 

may change over time. This might occur due to the nonstationary behaviour of the
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propagation channel, or due to the motion of the desired signal or interference which 

is typical in radar, sonar, and wireless communications [53], [94].

Two main approaches exist to deal with this problem. The first approach is based 

on repeatedly estimating the required statistics from temporal blocks of array data 

and subsequently using these statistics to recalculate the optimum weight vector. 

This approach is suitable for slowly varying environments only. On the other hand, 

when the environment is rapidly changing or the dimension of the weight vector is 

moderate to large, then the weight vector has to be continuously updated online every 

time a new data sample is received [1 1 2 ].

We consider the more general case of complex-valued array data. We can write 

the cost function of the GSC optimization problem in (2.58) as

j { w a) =  ( w0 -  C qWo) 11 E { x ( k ) x H (k) j  ( w0 -  C^Wa)  (2.74)

=  E { |w ^*(fc) - w % C ^ Hx(k) \2}  (2.75)

=  E 11yd(k) -  x c (k) |2} (2.76)

where yd{k) =  w ^ x { k )  is the desired output or reference signal and x c { k ) =  C (j  Hx(k)  

is the input data vector of the adaptive filter. The objective of the online algorithm is 

to minimize the mean square difference between the desired output and the weighted 

sum of the input vector. Note that the cost function J ( w a) is a bowl-shaped surface 

whose dimension is equal to the dimension of the weight vector w a. This surface has a 

unique minimum which is the optimal solution of the adaptive filtering problem [54].

We will briefly review two categories of online algorithms which are based on the 

GSC formulation. Alternate online algorithms for the LCMV problem can be found 

in [12], [90], [92], and [119],

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical & Computer Engineering

2.5 .1  L M S-based  beam form ers

The least mean squares (LMS) algorithm is one of the most widely used adaptive 

filtering algorithms due to its simplicity. First, the error signal e(k) is computed as 

the difference between the output of the adaptive filter and the desired output, i.e., 

e(k) = yd(k) — w ^ ( k ) x c { k )  where w a(k) is the weight vector estimate at the kth 

time instant. Based on this measure, the adaptive filter will change its weight vector 

coefficients attempting to reduce the error. This is done by moving the estimate in 

the negative direction of the instantaneous gradient of the error surface. The weight 

vector update relation is a function of the squared error signal and is given by

w a(k + 1) =  w a(k) + /a ( -V \ e(k ) \ 2)

= w a(k) + iae*(k)xc (k) (2.77)

where V\e(k)\2 is the gradient of the squared error with respect to the weight vector 

w a(k). The gradient is a vector pointing in the direction of change in filter coefficients 

that will cause the greatest increase in the error signal. Because the goal is to minimize 

the error, the filter weight vector coefficients are updated in the direction opposite 

to the gradient, and hence the negation of the gradient term. The constant // is the 

step-size, which determines the amount of gradient information used to update the 

weight vector and controls the convergence speed of the algorithm. After repeatedly 

adjusting the weight vector coefficients in the direction opposite to the gradient of 

the error, the adaptive filter should converge.

The main virtue of the LMS algorithm is its computational simplicity. However, 

its main disadvantage is that its convergence speed depends on the shape of the error 

surface and the eigenvalue distribution of the input data covariance matrix, and can 

be very slow if the covariance matrix is ill-conditioned [54].
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2 .5 .2  R L S-based  beam form ers

An alternate approach to the LMS technique is the exponentially weighted recursive 

least squares (RLS) algorithm. At the kth  time step, the algorithm chooses the weight 

vector estimate so that the weighted sum of past squared errors is minimized. The 

RLS optimization problem can be written as

k

mi.n ARLS M * ) -  w a (k )xc (i)\2 (2.78)/Wa\k) .*=0

where Arls is the RLS forgetting factor which is positive, slightly less than 1, and 

determines how fast previous data are deemphasized [54].

One of the key features of the RLS algorithm is that its convergence is independent 

of the condition number of the data covariance matrix and is typically much faster 

than the LMS algorithm [54], [112]. However, its computational complexity is O (M%) 

where M a is the dimension of the weight vector w a{k). This computational complexity 

is much higher than that of the LMS algorithm which is O (Ma) [112].

2.6 C onclusion

In this chapter, we have presented a brief overview of classical adaptive beamform­

ing techniques. We have started by describing the array models for wideband and 

narrowband signals. Optimum adaptive beamforming techniques that assume perfect 

knowledge of the array and signal environment have been reviewed. We have also dis­

cussed some classical beamforming approaches that can provide robustness against 

various mismatches in the array manifold and highlighted the problems with each of 

these approaches. The next three chapters will focus on the development of compu­

tationally efficient algorithms for robust adaptive beamforming that can remedy the 

shortcomings of the existing approaches.
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Chapter 3 

Narrowband Robust A daptive  

Beam form ing

3.1 Introduction

The need for robust adaptive beamforming arises in many practical applications where 

the desired signal is present in the beamformer training data and where the assump­

tions on the nature of the desired signal and/or interference are violated. This 

need may also arise as a consequence of finite sample support, the inherent non­

stationary nature of the underlying environmental processes, array manifold errors, 

etc. [1], [23], [40], [41], [43].

One of the main problems that occur in practical adaptive array systems is the 

mismatch between the presumed desired signal steering vector and the actual one 

[62], [116]. Adaptive array techniques are known to be very sensitive to even slight 

mismatches of such type that may occur due to look direction errors, imperfect array 

calibration, source local scattering, wavefront distortions, etc. [41].

In Section 2.4, we have revised several classical approaches to provide robust­

ness against steering vector mismatches. One of these techniques is the directional
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derivative constrained LCMV beamformer which provides robustness against look 

direction errors [79], [84]. However, this technique is not sufficiently robust against 

other types of mismatches [41]. We have also revised several ad-hoc approaches to 

overcome arbitrary desired signal steering vector mismatches, such as the diagonal 

loading technique [1], [2], [14], [23] and the eigenspace-based beamformer [18], [36].

We start this chapter by revising one of the recent theoretically rigourous and 

powerful approaches to robust beamforming in the presence of an arbitrary unknown 

desired signal steering vector mismatch [116]. This approach is based on worst- 

case performance optimization. It obtains the weight vector by minimizing the out­

put interference-plus-noise power while maintaining a distortionless response for the 

worst-case (mismatched) signal steering vector. The robust MVDR problem is for­

mulated in [116] as a second-order cone programming (SOCP) problem that can be 

solved in polynomial time using interior point methods. It is also shown in [116] 

tha t the robust MVDR beamformer can be interpreted as a diagonally loaded beam- 

former with an adaptive diagonal loading factor that is optimally matched to the 

amount of uncertainty in the desired signal steering vector. This work has been 

extended in [70], [74], [115] and [123], in particular, alternative Newton-type iter­

ative algorithms have been developed in [70], [74], and [123] for this beamformer 

and its modifications. In [115], an SOCP-based generalization of the robust MVDR 

beamformer of [116] has been proposed which additionally accounts for nonstationary 

environments. However, the algorithms presented in [70], [74], [115], [116], and [123] 

do not have direct online implementations and their robustness against interference 

nonstationarity and abrupt environmental changes is insufficient.

In this chapter, we develop a Kalman filter-based technique for implementing the 

robust MVDR beamformer of [116], where the robustness constraint is incorporated 

in the measurement equation of the state-space model. The proposed beamformer 

can be updated online and requires only O (M 2) computations per iteration compared
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to O (M 3) computations required for the SOCP-based algorithm of [116] and for the 

algorithms proposed in [70], [74], and [123]. Next, we study the convergence properties 

of the proposed beamformer in a stationary environment and prove that it has a 

convergence rate close to that of the SMI beamformer. Furthermore, we propose two 

modifications of our Kalman filter-based beamformer which additionally account for 

abruptly changing nonstationary environments. The first modification is based on the 

detection of environmental changes through hypothesis testing, whereas the second is 

based on hypotheses merging using the interacting multiple model (IMM) estimation 

technique [8 ]. At the end of the chapter, we provide simulation results comparing our 

Kalman filter-based implementation of the robust MVDR beamformer to its original 

SOCP-based implementation of [116].

3.2 W orst-C ase Perform ance O ptim ization-based  

B eam form ing

Let us consider a linear M -sensor array. In Section 2.3.1, we have presented the 

narrowband signal model. According to (2.28), the observation vector is given by

The well-known MVDR beamformer discussed in Section 2.3.1 minimizes the out­

put interference-plus-noise power while maintaining a distortionless response to the 

desired signal [79]. The MVDR problem is given by

where a  is the presumed desired signal steering vector. Note that the presumed 

steering vector may be an erroneous (mismatched) copy of the actual steering vector 

a(9s), yet the norm of the steering vector distortion can be usually bounded by some
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known constant e > 0 [116]. Therefore, the actual desired signal steering vector 

belongs to the set

The robust MVDR beamforming problem in [116] minimizes the total output 

power of the beamformer while requiring a distortionless response not only for the 

presumed steering vector a, but for all the vectors that belong to A{e). Thus, the 

weight vector of the robust MVDR beamformer can be obtained as the solution to 

the following problem [116]

Since there is an infinite number of vectors a  E A(s), the constraint set in (3.4) 

represents an infinite number of nonconvex constraints. These constraints can be 

converted into a single constraint that corresponds to the worst-case (mismatched) 

vector a  over the set A(e). Thus, we can write (3.4) as

A(e) =  {a  |a =  a + e, ||e|| <  e }  . (3.3)

min w HR xw  s.t. \wHa\ >  1 Va E A(e). (3.4)

min w il R xw s.t. min \wHa\ >  1 .
aê 4(e) (3,5)IV

Applying the triangle and Cauchy-Shwartz inequalities along with the inequality 

e|| < e,  we can write

w Ha\ =  \wHa  +  w He\ > \wHa\ — \wHe\ > \wHa\ — e||to||. (3.6)

The worst-case error vector that satisfies (3.6) with equality is given by

(3.7)

where

(f>e =  angle { w Ha}  . (3.8)

Thus, using (3.6) we can write

min lio^al =  \wHa\ — £||m
a&A(e)

(3.9)
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and therefore the problem can be written as

min w H R xw  s.t. Itw^al — e||m|| >  1. (3.10)
XV

The problem is still nonconvex due to the absolute value operator in the constraint. 

Yet, we can notice that the cost function in (3.10) does not change when w  undergoes 

an arbitrary phase rotation. Thus, we can always rotate w  such that w Ha  is real­

valued, without affecting the value of the cost function. Therefore, without any loss 

of optimality, the problem in (3.10) can be written as [116]

min w H R xw
XV

s.t. w Ha  — e||m|| >  1

Im{ioHa} =  0 (3-11)

which is a convex optimization problem.

This problem was solved in [116] using SOCP. It was also proved in [116] that 

the robustness constraint is satisfied with equality by the optimal solution. This can 

be seen by noticing that if the constraint was not active at the optimal point, i.e., 

if w Ha — c||m|| = / ? > ! ,  then we could further decrease the cost function simply 

by dividing the weight vector by (3, while still satisfying the constraint. Thus, we 

can replace the inequality constraint in (3.12) with an equality constraint without 

any loss of optimality. Based on this fact, different Newton-type iterative procedures 

have been proposed in [70], [74], and [123] to solve (3.12) and some of its extensions.

We further note that the second constraint in (3.11) is redundant as it is implied 

by the first constraint w Ha  =  e\\w\\ +  1 where £||m|| is pure real. Therefore we can 

write (3.11) as

m m w HR xw  s.t. w H a — s\\w\\ = 1. (3-12)
XV
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3.3 K alm an F ilter-based  R obust B eam form er

The use of the constrained Kalman filter to solve the linearly constrained MVDR 

beamforming problem was suggested in [20]. However, perfect knowledge of the array 

manifold was assumed throughout [2 0 ] and the issue of robustness against mismatches 

in the desired signal steering vector was not considered. In this section, we derive our 

Kalman filter-based implementation for the robust MVDR beamformer of [116].

3 .3 .1  D erivation

For the sake of convenience of subsequent derivations, let us introduce the mean 

square error (MSE) between the zero signal and the beamformer output as

MSE =  E j |0  — x H{k)w{k) |2} =  w HR xw.  (3.13)

Therefore, minimizing the beamformer output power is equivalent to minimizing the 

MSE in (3.13). Also, the constraint in (3.12) can be expressed as

h(w(k))  =  1 (3.14)

where

h(w(k )) =  e2w H (k)w(k)  — w 11 (k)aaH w(k)  +  w H {k)a +  a Hw{k).  (3.15)

The robust beamforming problem can be written as

min MSE s.t. h(w(k )) =  1. (3.16)
w(k)

The Kalman filter is a minimum mean square error (MMSE) estimator [6 , p. 207] 

and, hence, it can be used to solve (3.16). An unknown dynamic system can be 

modelled as a filter whose state vector w(k)  undergoes a first-order Markov process 

[54], i.e.,

w ( k  +  1 ) =  ~fw(k) +  n w(k) (3.17)
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where 7  is a fixed parameter of the model, and n w(k) is the process noise vector which 

is assumed to be white Gaussian with zero mean and covariance matrix Q w = a^I .  

Thus, the process equation of the optimal weight vector w  is given by (3.17), whereas 

the measurement equation is given by

0 

1

which can be written in matrix notation as

2 : =  h ( w( k )) +  n m(k) (3.19)

where nmx)(k) and nm^ (k) are the residual and constraint errors, respectively. They 

can be modelled as independent zero mean white sequences with covariance matrix

(3.20)

The use of the MMSE estimator to estimate the state vector w ( k ) will yield a solution 

that minimizes the uncertainties due to the state and measurement noises. Minimizing 

the mean square value of n m,o (k) will lead to minimizing the output power of the 

beamformer, while minimizing the mean square value of (k) will minimize the 

MSE in satisfying the robustness constraint and, hence, the resulting estimate will 

solve (3.12).

Due to the nonlinearity of the measurement equation in (3.19), we will use the 

second-order EKF to find a recursion for the weight vector estimate w ( k ) [6 , p. 

381]. We start by evaluating the Jacobian H w(k, w ( k )) of h(w(k)) ,  and the Hessian

49
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* H(k)w(k) 

h(w(k ))

Wn,o(^ 0
+

^rn, 1 (k'}
(3.18)
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matrices and H ^ w of the two components of h(w(k))

H w( k , w (k )) =  (V h T(w(k)))T

x H(k)

e2w H (k ) — (a a Hw ( k ) ) H + a H 

H {1  =  W " { i " ( t ) ® ( t ) } = 0  

U i l  =  V V H {/i(iu(fc))} =  e2I  — aaH.

(3.21)

(3.22)

(3.23)

The recursion for the estimated weight vector starts with an initial weight vector 

estimate w>(0) with the associated covariance matrix P(0|0) and updates the weight 

vector estimate as

w(k)  = w( k  — 1) +  G ( k ) ( z  — z(k\k  — 1)) (3.24)

where the predicted measurement z{k\k — 1 ) and the filter gain G(k)  are given by

z(k\k — 1 )
j x  (k)w(k — 1 )

h( ^w( k  -  1 )) +  | t r  ^H^>wP(k \k  -  1 ) |  

G(k) = P(k \k  -  l )H*(k ,~fw(k  -  1 ))S'“ 1 (fc)

(3.25)

(3.26)

respectively, where tr{-} denotes the trace of a matrix. Here, the innovation covari­

ance S(k)  and the predicted weight vector covariance P(k \k  — 1) are given by

S(k)  = H w(k, ' jw(k  -  l ) )P(k \k  -  l ) H ^ ( k , ' y w ( k  -  1)) 

0 01
2 0 1

tr P(k\k  -  l)H<»„P(k\k -  1 )} +  R  (3.27)

P ( k \ k - l )  =  ~,2P ( k  -  l\k -  1 ) +  Q w.

The updated weight vector covariance can be expressed as

(3.28)

P(k\k)  =  ( I  -  G ( k ) H w{k, 7 w( k  -  l ) ) )P{k\k  - I )  ( I -  G ( k ) H w(k, j w { k  -  1 ))) H

+ G ( k ) R G H(k). (3.29)
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The parameters 7  and a 2 of the state equation should be chosen such tha t the 

model can track the optimal weight vector as the environment changes. Their effect 

can be seen from (3.28). From this equation, it is clear that when increasing these 

parameters, the Kalman filter tends to assign more weight to recent data enabling 

better tracking of the environment. For a nonstationary environment, a typical choice 

of 7  is slightly greater than one. Although this choice makes the state equation 

unstable, the stability of the filter can be guaranteed from the observability condition 

[19, p. 192]. The value of cr2 is chosen according to the degree of nonstationarity of 

the operating environment. For example, a choice of a^  equal to 10- 4  indicates that 

each component of the optimal weight vector can change independently during one 

time step by the order of 10-2 . Note that even higher values of a 2, can be chosen for 

more rapidly changing environments. On the other hand, for stationary environments 

the optimal weight vector does not change with time, and therefore, 7  =  1 and cr2 =  0 .

From the first line of the measurement equation it follows that the parameter cr̂ 0 

should be chosen in the same order as the optimal output power of the beamformer. 

The latter power can be roughly approximated as ||m ||2 (Mcr2 +  cr2) [79]. It is worth 

noting that our beamformer is not sensitive to the choice of cr^ 0 because the norm 

of the weight vector estimate is chosen by the filter so that the output power of the 

beamformer matches the value of cr^ 0. This will be illustrated by means of simu­

lations. The value of the parameter cr^ 1 should be chosen very small, for example, 

<7 ^  , =  1(T12, so that the robustness constraint is satisfied with high accuracy without 

leading to any numerical errors [39].

The consistency of the beamformer can be checked online through the normalized 

innovation square (NIS) test [6 , p. 236]. Under the Gaussian assumption for the 

state-space model, the NIS

e{k) = ( z -  z(k\k -  1 ) )HS - l (k){z -  z(k\k  -  1)), (3.30)
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is chi-square distributed. From (3.25), we can see that the first component of the 

innovation z  — z(k \k  — 1 ) is generally complex-valued, whereas the second component 

is guaranteed to be real-valued because both h(^w(k  — 1 )) and the trace of the 

Hermitian matrix H^! wP(k \ k  — 1) are real. Thus, the NIS is chi-square distributed 

with three degrees of freedom, and should be within acceptable limits with a certain 

probability if the beamformer is consistent. For example, using a 95% confidence 

region, the NIS should be less than 7.815 with probability 0.95.

An exponential window can be used to evaluate the NIS of the beamformer, i.e.,

ea(k) =  aea(k -  1 ) +  {z — z(k\k  — 1 ))H S ~ 1(k)(z  -  z(k\k  — 1 )) (3.31)

where the effective window length is given by yAy. Therefore, under the above men­

tioned Gaussian assumption, ea(k) can be approximated using first-order moment 

matching as chi-square distributed with [pAy] degrees of freedom, where [”x] denotes 

the integer greater than or equal to x.

For initialization of the iterative algorithm in (3.24)-(3.29), a Gaussian random 

weight vector estimate m (0 ) can be used together with an initial covariance matrix 

estimate P (1 |0) =  f30I ,  where (30 is selected so that the NIS of the first iteration is 

acceptable. Using (3.30) at k =  1, and approximating S'(l) by ignoring the second- 

order term and the measurement noise covariance matrix, we can write

e(1) »  -  4 ( l|0 )) i , ( H „ ( l > ( 0 ) ) H 2 ( l ,  w (0 )))-‘ (z -  i ( l |0 ) ) .  (3.32)

The value of j30 can be calculated by choosing e(l) such that it lies within ac­

ceptable limits, i.e., it lies with in the 90% double-sided acceptance region of the 

chi-square distribution with 3 degrees of freedom. For example e(l) can be selected 

equal to 3 which is the expected value of the distribution.
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3 .3 .2  C o m p u ta tio n a lly  efficient im p lem en ta tion

An important issue for the Kalman filter-based robust beamformer is its computa­

tional complexity. The evaluation of the Jacobian matrix in (3.21) has a complexity 

of 0 { M 2), whereas the Hessian matrix in (3.23) is constant for a fixed presumed 

steering vector a. The weight vector update in (3.24) has a complexity of O( M) ,  

and the complexity of evaluating the predicted measurement in (3.25) is of O (M 2). 

Additionally, the computation of the filter gain in (3.26) has a complexity of O (M 2).

The computation of the innovation covariance matrix through (3.27) can be sim­

plified by substituting with (3.23) and rewriting the second term as

tr { f l U P W *  -  -  1)}

-  tr  { (e2P(k \k  -  1) -  d d HP{k\k  -  1 )) (<e2P{k\k  -  1) -  a d HP(k \k  -  1))}

=  e4tr {P(k \k  — l ) 2} — 2e2 tr  {P(k \ k  — l ) a a HP(k\k  — 1)}

+  tr  { d a HP(k \k  — l ) a d HP(k \ k  — 1)}

=  £ * \ \ P ( k \ k - l ) \ \ l - 2 £ 2\ \ P ( k \ k - l ) a \ \ 2 + (dHP ( k \ k - l ) a ) 2 (3.33)

where || • ||f is the matrix Frobenius norm.

Therefore, the innovation covariance matrix update can be written as

S(k)  =  \ {e4\\P(k\k -  1 ) || | -  2e2 ||P(A:|fc -  l ) a | | 2 +  (d HP(k \k  -  l ) a ) 2)
0 0 

0  1  j

+  H w( k , w ( k - l ) ) P ( k \ k - l ) H * ( k , w ( k - l ) )  + R  (3.34)

which requires only O (M 2) operations.

The computational bottleneck of the Kalman filter-based robust beamformer is 

equation (3.29) which requires O (M 3) multiplications. However, this equation can 

be replaced by [6 , p. 206]

P(k\k)  = P(k \k  -  1) -  G{k)S{k)GH{k) .. (3.35)
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whose complexity is of O  (M 2).

It is important to stress that although using the covariance update equation (3.35) 

requires less computational effort than (3.29), it was noted in [6 , p. 206] that it is 

more prone to numerical errors (loss of positive semidefiniteness of the covariance 

matrix). However, this is not likely to happen for our state-space model in (3.17) and 

(3.19) due to the nonzero value of the diagonal entries of the process noise covariance 

matrix. We note that in our simulations there was no single run in which the use of 

(3.35) instead of (3.29) has caused any numerical problems.

In summary, the proposed Kalman filter-based implementation of the robust 

MVDR beamformer of [116] has a computational complexity of O (M 2) per itera­

tion, whereas its original SOCP-based implementation in [116] has a complexity of 

O (M 3 ). Moreover, an important advantage of the proposed Kalman filter-based al­

gorithm is that it can be easily implemented without any need of a specific built-in 

optimization software.

3 .3 .3  C onvergence an a lysis

The convergence rate of the EKF-based robust beamformer can be analyzed in terms 

of its MSE. For a stationary environment, the MSE at the kth iteration is given by

MSE(k) =  E j |0  — x H(k)w(k) \2}

=  E j | n m,o(fc) +  x H(k) (w ( k ) -  w ( k ) ) |2|

=  + E ^ x H(k)(w(k)  -  w(k) ) (w(k)  -  w( k) )Hx ( k )}

=  o 2m Q +  tr  |E {  (w(k)  — w(k))  (w ( k ) — w( k ) ) Hx ( k ) x H(k)} j  (3.36) 

— am,o +  tr  | e {  (w(k)  — w(k))  (w ( k ) — w( k ) ) H}E[ x( k )xH(k)} j  (3.37) 

= °-2m , o + t e { P ( k ) R x } (3.38)
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where (3.37) follows from (3.36) due to the fact that the error in the weight vector 

estimate is independent of the input data [6 , p. 123].

Next, we find an expression for the weight vector covariance matrix P(k) .  Using 

the recursion for the inverse covariance (information) [6 , p. 303], we can write

P ~ \ k )  =  P - ^ k - ^  + h Z i K w i k ^ R - ^ ^ w i k ) )

= P ~ 1(k — 1)4— x ( k ) x H(k)
° m ,  0

+  — ((e2I  — a a H)w(k  — 1 ) +  a)  ((e21  — a a H)w{k  — 1 ) +  a ) H
a m, 1

am,0 i=i
k

+ — ((e2^  — a a H)w(i  — 1) +  a ) ((e2I  — a a H)w(i  — 1) +  a ) H. (3.39)
i= l

In a stationary environment and for k sufficiently large, the initial inverse covariance 

P - 1 (0) can be neglected and the weight vector estimate w(k)  can be replaced by the 

steady state weight vector estimate w.  Thus, we can write

P ~ 1(k) = — R x (k) H— ((e2I  — a a H)w + a ) ((e2I  — d d H) w + a ) H (3.40)
a m ,  o  a m , l

where R x (k) is the /e-snapshot sample covariance matrix given by

k

R x (k) = \  ^  (3-41)
=i

Using the matrix inversion lemma [51], we can write

P{k) = ^ R x \ k )  -  j ^ - R x \ k ) ( ( s 2I  -  a a H)w + a) ((e2I  -  a a H)w  +  d ) Hr J

(3.42)

where the scalar fi\ is given by
2

=  ((e2I  — d d H)w  + a ) HR x  (k)((e2I  — a a H)w +  a)  +
°m, o

((e2I  — d a H)w  +  d )H"Pa,1 (/c)((e2/  — d a H)w  +  a), (3.43)
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and the approximation in (3.43) is due to a 2ml <C cr^ 0 which follows from the guide­

lines of choosing these parameters outlined in Subsection 3.3.1.

Substituting with (3.42) in (3.38), the MSE recursion can be approximated by 
2 2 

MSE{k) = a2mfi + ^ ^ t x { R x {k)Rx } -  j ^ ^ t v ^ R x {k)({£2I  -  a a H) w +  a)

((e2I  — a a H)w + a ) H R x l ( k ) Rx j .  (3.44)

For k sufficiently large, the sample covariance matrix provides a good approximation 

of the covariance matrix R x , thus, we can write,

MSE(*) =  < 0 +

~  ( ^ g2f _  d* ’H)ib +  « ) i? ^ 1 ( A;) ( ( e 2 1  -  a a H) w  +  a ) )

=  < 0  ( l  + f f ^ )  ■ (3.45)

Prom the above equation we conclude that the steady state residual output power is 

given by cr^ 0, and that the beamformer converges to within 3 dB of its steady state 

output power in M  iterations.

3.4 M ultip le  M odel B eam form ers

In this section, we introduce two beamformers that extend the robust beamformer 

design to abruptly changing nonstationary environments. Our first beamformer is 

based on hard decision detection of nonstationarities, while the other is based on 

hypotheses merging and IMM estimation techniques [6 , p. 453]. We develop these 

techniques for two state-space models, namely, the stationary model with 7  =  1 and 

= 0  (that does not assume tha t the optimal weight vector changes in time and has 

the advantage of a lower misadjustment in the optimal weight vector estimate and, 

hence, a high steady state output SINR); and the nonstationary model, which has 

the advantage of a high capability of tracking changes in the operating environment.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical & Computer Engineering

3.4 .1  H ard  d ecision  sw itch in g

If the statistical properties of the environment change abruptly, the difference between 

the measurement vector z  and the expected measurement vector z(k\k — 1) will be 

large. This will lead to a large value of the NIS of the stationary-modelled filter and 

this fact can be used to detect environmental changes. Therefore, the filter should be 

initialized at the beginning of operation in the stationary mode and the NIS should be 

monitored. If it exceeds a certain pre-specified threshold (for example, the upper 90% 

tail point of the chi-square distribution with the corresponding degrees of freedom), 

then nonstationarity is declared and the dynamic state-space model should be used 

to account for such nonstationarity. The effect of switching to the dynamic process 

equation leads to an increase in the uncertainty in the current weight vector estimate 

(reflected by the weight vector covariance matrix P(k\k))  due to multiplication by 

7 2 and the addition of the process noise covariance matrix Q w in (3.28). Hence, the 

beamformer will assign more weight to the latest measurements corresponding to the 

latest changes in the environment. This will allow the beamformer to efficiently track 

any environmental changes.

After switching to the nonstationary process model, the NIS should be monitored 

again, and when it drops below a certain pre-specified threshold (for example, the 

expected value of the chi-square distribution with the corresponding degrees of free­

dom), it is assumed that the beamformer has adapted to the new environment and 

the filter is switched back to the stationary model.

3.4 .2  In teractin g  m u ltip le  m o d el tech n iq u es

In multiple model environments, the optimal estimate of the state vector is known 

to be a function of the elemental state estimates obtained via estimators tuned to 

all possible parameter histories [17]. Thus, with time, an exponentially increasing
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(3.46)

number of filters is required to keep track of all possible model histories which is 

computationally impractical. Many suboptimal techniques have been proposed [6 ], 

among which the IMM is the most cost-effective in implementation [8 ].

In this approach, the state estimate is computed at the kth  time instant under 

two (or more) models, e.g., a stationary model M\  and a nonstationary model M2 

with each filter using a different combination of the previous model conditioned esti­

mates. The model switching process is assumed to be a Markov chain with the known 

transition matrix
P n  1 -  P u  

1 — P22 P22

where pmn is the probability that the model M n is in effect at time k given that the 

model M m was in effect at time k — 1. The value of prnm, can be estimated as

Pmm =  1 ~l (3.47)

where Qm is the expected sojourn time in state m.

One cycle of the algorithm consists of the following steps [6 , p. 455]:

1. Calculation o f th e  m ixing probabilities: The probability that the model 

Mm was in effect at time k — 1 given that Mn is in effect at time k, conditioned 

on the measured data up to and including time A: — 1 is given by

Pm\n(k ~  l \k  -  1) =  ^rPmnPm(k ~  1) for 771,72 = 1 , 2  (3.48)
Cn

where p m(k — 1) is the probability that the system is in the mode M m at time 

k — 1 and the normalizing constants are given by

2

C-n ^   ̂PmnPrn (k l). (3.49)
m =  1

2. M ixing: Starting with the weight vector estimates of the two filters and their 

associated covariances at time k — 1 , the mixed initial conditions w ^ \ k  — 1 )
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Figure 3.1: The IMM estimator.

and P ^ \ k  — 1| k — 1) for the filter matched to M n are computed as 

2

) ^ \ k  -  1) =  -  l)nm\n{k -  1|& -  1) (3.50)Wf\ V
m —1 

2

P ^ ( k  -  l|fc -  1) =  ] T  ^m\n{k ~  l|fc -  1) (P ^ \ k  -  1|k -  1)
m = 1

+  (w^m\ k  — 1 ) — w ('q \  k — l )) (w^m\ k  — 1 ) — Wql\ k  — 1 ) ) ^

(3.51)
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3. M ode m atched filtering: The weight vector estimate from (3.50) and its

associated covariance from (3.51) are used as inputs to the filter matched to M n 

to yield w^n\ k )  and P^ \ k \ k ) .

The likelihood function corresponding to the n th  filter, i.e., the probability of 

the measurement z ( k ) conditioned on the model M n being the correct model 

at time k  and given all the data history up to time k — 1, is calculated as

Ln(k) = -------^  exp ( ~ ( z  -  z {n\ k \ k  -  1 ))H{ S {n\ k ) Y \ z  -  z {n)(k\k -  1))")
2tv S ^ ( k )  \  2 J

(3.52)

where |S | is the determinant of the matrix S.

4. M ode probability update: The probability of each mode is updated ac­

cording to its likelihood by

Hn(k) = | L n{k)cn (3.53)

where c is a normalization constant given by

2

£ = ' Y ^ L n(k)cn. (3.54)
n = 1

5. Estim ate and covariance combination: The model conditioned estimates 

and covariances are combined to give the beamformer weight vector estimate 

and its associated covariance as 

2

w(k)  =  'ŝ 2 / w {'n\ k ) i i n(k) (3.55)
n = 1 

2

P{k\k)  =  ( P {n\ k \ k )  + ( w (n\ k ) - w ( k ) ) ( w ^ n\ k ) - w ( k ) ) H) . (3.56)
n = 1

Figure 3.1 shows one cycle of the IMM estimator.
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3.5 S im ulations

3.5 .1  S en sit iv ity  to  th e  choice o f  filter p aram eters

We study the effect of choosing the parameter <r  ̂0 on the output SINR of the pro­

posed Kalman filter-based beamformer. In this example, a stationary environment 

is assumed with a ULA of ten sensors spaced half wavelength apart. The array is 

steered towards the direction 90 = 3°. The desired signal with SNR =  0 dB impinges 

on the array from the direction 9S = 5°. Also, two interference signals arrive from 

the directions 9\ = 30° and #2  =  50°, both with an interference-to-noise ratio (INR) 

equal to 30 dB. The desired signal is assumed to be always present in the test cell. 

The spatial signature of the desired signal is distorted by wave propagation effects 

in an inhomogeneous medium which are modelled as independent random phase in­

crements drawn from a Gaussian random generator with variance 0.04. The phase 

distortions remain constant for all snapshots and are changed independently in each 

run [116]. The presumed signal steering vector is assumed to be normed as a Ha = M  

and, following the guidelines of [116], the robustness parameter e =  3 is used both 

in the Kalman filter-based beamformer and the robust MVDR beamformer of [116]. 

The parameters of the Kalman filter are selected as <7 ^  =  10-12, 7  =  1, cr2 =  0, 

and a random Gaussian vector is selected for the initialization of the Kalman filter- 

based beamformer, with the associated initial covariance calculated from (3.32) using 

e(l) = 3. Simulation results are averaged over 100 Monte Carlo runs.

Figure 3.2 shows the average output SINR after 100 iterations versus different 

choices of the parameter p = <7^0/(M<72 +  <72). It can be seen from this figure that 

the Kalman filter is insensitive to the choice of <7 ^  0 as the output SINR remains 

close to the optimal SINR for a wide range of the values of p. This behaviour can be 

attributed to the change in the norm of the weight vector estimate to yield an output 

power matching the value of <7^0. This can be seen from Figure 3.3 that displays
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Figure 3.2: Average output SINR versus p = o2mfJ ( M o ‘2s +  cr )̂.
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Figure 3.4: Array beampatterns of various beamformers.

the value of the squared norm of the final weight vector estimate versus p. From 

this figure, we can see how the squared norm of the weight vector changes over the 

range of p so that the output power of the beamformer matches the value of cr^0. At 

extremely high or low values of p, the weight vector norm can not match the value of 

p anymore due to the robustness constraint that controls the norm of this vector. In 

such extreme cases, the SINR becomes substantially degraded.

3 .5 .2  P erform ance com parison  w ith  o th er beam form ers

In the next simulation examples, the performance of the proposed Kalman filter-based 

beamformer is compared with that of the SMI, the eigenspace-based, and the robust 

MVDR beamformers. First, we compare the performances of these techniques in the 

same stationary scenario described in the previous example. In particular, we use the 

same parameters of the Kalman filter and choose cr^ 0 =  50( M a 2s +  ofj.
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Figure 3.5: Average output SINR versus the iteration number.

Figure 3.4 shows the directional patterns of the four beamformers tested (the 

proposed beamformer is computed using 100 iterations). From this figure, we can 

see that although all these beamformers place nulls in the directions of the interfer­

ence signals, self-nulling occurs only in the SMI beamformer whereas the directional 

patterns of the other three robust beamformers do not suffer from self-nulling. We 

can also observe a high degree of similarity in the directional patterns of the robust 

MVDR and the Kalman filter-based beamformers. This similarity can be explained 

by the fact that the two beamformers solve essentially the same problem but using 

different optimization approaches.

Figure 3.5 shows the average output SINR of the beamformers tested over 100 

Monte Carlo runs versus the iteration number (snapshot index). Additionally, the 

optimal SINR curve is shown in this figure. From this figure, it can be observed 

that the eigenspace-based, Kalman filter-based, and robust MVDR beamformers have 

the best performances among the techniques tested. However, the performance of
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Figure 3.6: Output power versus the iteration number.

the eigenspace-based beamformer significantly drops if the number of snapshots is 

small. As expected, the performance of the Kalman filter-based and robust MVDR 

beamformers is nearly identical.

Figure 3.6 displays the instantaneous output power \xH(k)w(k)\2 of the Kalman 

filter-based beamformer versus the iteration number (with the weight vector estimate 

normalized to have unit norm after each iteration) along with the optimal output 

power under the unit norm weight vector constraint. From this figure, we can see 

that the convergence rate of the Kalman filter beamformer to the optimal output 

power is quite fast and that the steady-state misadjustment is reasonably small. The 

beamformer converges to within 3 dB of its steady state output in around 10 iterations 

which agrees with our convergence analysis in (3.45).

Finally, we investigate the effect of the desired signal SNR on the performance of 

the four beamformers tested for the same scenario as in the previous example and
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Figure 3.7: Average output SINR versus SNR.

the same Kalman filter parameters except for a sample size of N  =  20 snapshots 

(which is enough for the convergence of our beamformer as follows from the previous 

simulation). Figure 3.7 shows the average output SINR of various beamformers versus 

the SNR. It can be seen from this figure that the performance of the Kalman filter- 

based beamformer is very similar to that of the robust MVDR beamformer. Both 

techniques outperform the eigenspace-based beamformer (at low SNR) and the SMI 

beamformer (at all SNR).

3 .5 .3  R o b u stn ess  aga in st rapid  en v iron m en ta l changes

In our next simulation example, we consider a nonstationary scenario with only one 

interferer which changes its direction and power abruptly, while the desired signal is 

stationary and has the same look direction error and wavefront distortions as in the 

previous two examples. In particular, the interference signal arrives from 6\ =  30°
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with INR =  30 dB for the first 625 snapshots, which is then abruptly changed to 

9i = 60° with INR =  40 dB. We compare the stationary Kalman filter-based beam- 

former, the nonstationary beamformer with 7  =  1 and cr2 =  10-4 , the Kalman filter- 

based beamformer with hard decision switching between the previous two models, the 

IMM-based beamformer with the same previous two models, and the robust MVDR 

beamformer of [116] with a sliding window of 40 snapshots. For the hard decision 

switching algorithm, the NIS is calculated using a sliding window of length 5, and 

switching to the nonstationary model is performed if the NIS exceeds the upper 90% 

tail of the chi-square distribution with 15 degrees of freedom, whereas switching back 

to the stationary model occurs when the NIS drops back to its expected value which 

is equal to 15. For the IMM-based beamformer, the stationary model sojourn time is 

selected to be equal to 50 snapshots, whereas the nonstationary model sojourn time 

is selected to be equal to 10 snapshots. The other parameters of all the Kalman filters 

used are selected as ct̂ q =  50(M<js2 +  cr]) and afnl  =  10“ 12. Simulation results are 

averaged over 500 Monte Carlo runs.

Figure 3.8 shows the average output SINR of the beamformers tested versus the 

iteration number. We can clearly see that the nonstationary Kalman filter beam- 

former can follow the environmental changes at the expense of a reduced steady-state 

SINR, whereas the stationary beamformer can not follow the rapid change in the en­

vironment. W ith the proposed modifications of the Kalman filter-based beamformer, 

the environmental changes can be followed and, at the same time, a high steady-state 

SINR can be maintained. It can be also observed from this figure that the IMM- 

based beamformer converges to the optimal solution faster than the hard decision 

switching-based beamformer.

It can be observed from Figure 3.8 that, because we have chosen a nearly op­

timal sliding window length for the robust MVDR beamformer in this example, its

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical & Computer Engineering

CD2ct
z
COS
Q .
3O

- 2

Optimal beamformer
—  Robust MVDR (S O C P -based) beamformer
• O  Stationary Kalman filter-based beamformer
• • ■ • Nonstationary Kalman filter-based  beamformer
—  Hard decision sw itching-based beamformer
—  IM M -based beamformer

-4

-6

1000 200 300 400 500 600 700 800 900 1000
Iteration

Figure 3.8: Average output SINR versus the iteration number.

50

45

40

35

o  25

^ 20

15

10

5

00 100 200 300 400 500 600 700 800 900 1000
Iteration number

Figure 3.9: NIS for the hard decision-based beamformer.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical & Computer Engineering

0.9

0.8 

0.7

S  ° -6
'(5

1 0.5
■q3
■oo
2  0.4

0.3 

0.2 

0.1 

0
100 200 300 400 500 600 700 800 900 1000

Iteration number

Figure 3.10: Model probabilities for the IMM-based beamformer.

performance is better than that of the proposed algorithms (both in terms of the con­

vergence speed and the steady-state SINR). However, this advantage is achieved at 

the expense of higher computational complexity. Furthermore, in practical situations 

it may not be possible to optimize the window length.

Figure 3.9 shows the NIS for the hard decision-based beamformer together with 

the decision thresholds for a single run. From this figure, the effect of the abrupt 

environmental change on the NIS can be seen.

Figure 3.10 displays the average probability of the stationary and nonstationary 

models of the IMM-based beamformer. We notice from this figure that this beam- 

former successfully detects the nonstationarity, as can be seen from the increased 

probability of the nonstationary model at the transition time.
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3.6 C onclusion

We have presented a novel computationally efficient Kalman filter-based algorithm 

for the narrowband robust MVDR beamformer of [116]. This algorithm is suitable for 

online implementation. We have also presented two modifications of the proposed al­

gorithm to additionally account for nonstationary environments with abrupt changes 

using model switching and hypotheses merging techniques. Simulation results have 

validated an excellent robustness and a superior performance of the proposed Kalman 

filter-based beamformers compared to the existing robust beamforming algorithms.

The next two chapters will focus on deriving computationally efficient algorithms 

tha t extend the narrowband robust MVDR beamformer of [116] to the wideband 

signal environment.
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Chapter 4

W ideband R obust Adaptive 

Beamforming:

A W orst-Case Performance 

O ptim ization Approach

4.1 In troduction

The LCMV algorithm revised in Section 2.3.2.1 is one of the earliest adaptive beam- 

forming algorithms for wideband signals. It minimizes the array output power subject 

to look direction constraints. These constraints preserve the signals arriving from the 

desired look direction that appear in phase after the presteering delay filters. How­

ever, in practical scenarios the array performance can be severely degraded due to 

mismatches in the presumed array manifold. These mismatches might result from 

look direction errors, array sensor location errors, presteering delays quantization
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effects, and/or wavefront distortions. The effect of all these mismatches can be de­

scribed as presteering errors. Hence, the received desired signal components can not 

be perfectly phase-aligned by the presteering delays and, thus, they are “interpreted” 

as interference and erroneously suppressed. In Section 2.4, we have reviewed several 

classical approaches to add robustness to the LCMV algorithm against various mis­

matches in the array manifold. However, all of these approaches either provide a fixed 

non-optimal amount of robustness that is not linked to the amount of mismatches in 

the array manifold, e.g., through the use of derivative constraints, or use an ad-hoc 

choice of robustness parameters as in the diagonal loading technique.

Recently, several theoretically-rigourous algorithms have been proposed to add 

robustness to the narrowband minimum variance beamformer so that it is matched 

to the amount of uncertainty in the array manifold. In Chapter 3 we have revised 

one of these recent approaches to robust narrowband beamforming. In this approach 

a spherical uncertainty set was used to describe the mismatches in the desired signal 

steering vector. Ellipsoidal and polyhedral uncertainty sets were used in [70], [74], 

and [121]. In all these approaches, the solution to the robust minimum variance 

beamforming problem was found through worst-case performance optimization.

Two extensions of the robust narrowband beamformer of [70] to the wideband 

case were presented in [118] that are based on subband decomposition. The first 

uses a frequency dependent robustness parameter for each subband and is termed the 

constant powerwidth robust minimum variance (CPRMV) beamformer. Whereas, 

the second combines the robust narrowband beamforming algorithm with a shad­

ing scheme designed for the delay and sum beamformer and is termed the constant 

beamwidth robust minimum variance (CBRMV) beamformer. However, the CBRMV 

beamformer has limited applicability as it requires a special underlying array struc­

ture due to the particular shading scheme employed. In addition, this shading scheme 

tends to deactivate some elements of the array at each subband which reduces the
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interference suppression capability of the beamformer. Moreover, both the CPRMV 

and CBRMV beamformers are suboptimal as they optimize each subband weight 

vector independently and ignore constraining the phase response of the beamformer 

which causes distortions in the output signal.

In this chapter, we present a novel wideband beamformer with robustness directly 

related to the level of uncertainties in the array manifold. Our beamformer extends 

the work in [70], [74], and [116] to the more complicated wideband case and avoids 

the suboptimal subband decomposition approach of [118]. The proposed beamformer 

maintains a high gain not only to the signals appearing in phase after the presteering 

delays but also to all the signals with an additional norm-bounded phase error vector. 

Therefore, it prevents the cancellation of the desired signal components even in the 

presence of mismatches in the array manifold. The phase response of the array is 

controlled through additional linear phase constraints imposed on each of the FIR 

filters of the array processor. This has the effect of limiting phase distortions in 

the output signal. Moreover, these constraints are equivalent to NS1-PS derivative 

constraints and thus provide additional robustness to the beamformer. The resulting 

problem is solved through a worst-case performance optimization approach and is 

shown to be convex.

Next, we provide two implementations for the proposed beamformer; a lower 

computational complexity implementation that is based on discretizing the resulting 

spectral constraints over a finite grid of frequency points, and a higher complexity 

implementation using a technique recently developed in [25] that ensures that the 

spectral constraints are satisfied at each frequency point without discretization. The 

resulting optimization problems can both be solved with polynomial complexity using 

well-established interior point methods [83]. Simulation results show that the pro­

posed beamformer has an improved robustness against various mismatches compared 

to earlier wideband beamforming techniques. Moreover, it is not sensitive to the
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choice of the uncertainty set and requires only coarse knowledge about the amount 

of mismatches in the array manifold.

As mentioned above, the effect of mismatches in the array manifold can be grouped 

into errors in the presteering delay values. As a result, the desired signal components 

appear incoherently at the output of the presteering filters and therefore they are 

considered as interference by the array processor. In this section, we will derive a 

novel wideband beamformer that is robust against presteering delay mismatches and 

provides an adjustable amount of robustness depending on the mismatch norm. The 

problem will be formulated as a convex optimization problem that can be solved in 

polynomial time using interior point methods [9].

4 .2 .1  U n certa in ty  se t

Let us assume tha t the phase incoherency in the presteered desired signal compo­

nents can be represented by a norm-bounded vector A ( /)  e  A £.\(f),  i.e., the desired 

signal component with frequency /  arriving from the direction 0S appears after the 

presteering delays as

where q is a common time delay at each of the M  sensors and we have introduced the

4.2 R obu st W ideband  B eam form er

T ( f ) a ( f ,  9S) = e ^ l M +  A (/), A  (/) G A , i ( / ) (4.1)

phase term to avoid dependency of the phase error vector on the phase center

location of the array [12]. We define the mismatch set A e,i(f) as

(4.2)

where || • ||j is the vector i-norm.
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For example, we can form the robustness set A e, 1 ( /)  for the linear array structure 

described in Section 2.2.3 by considering a look direction error A9, a maximum error 

in sensor location along the array line given by A z — a zc / (2/„) where a z is the relative 

sensor displacement with respect to the presumed array inter-element spacing, and 

a quantization step in presteering delays given by AT. The M-dimensional vector 

containing the maximum error in the values of the presteering delays is given by

T  = -  ((z + AzC) sin(#o +  A0) — z  sin 90) + ^A  T£ (4.3)
c 2

where z  = [ z \ , , zm]t  is the M-dimensional vector containing the presumed loca­

tions of the M  sensors along the z-axis, C is a vector of length M  with alternating l ’s 

and —l ’s that corresponds to the maximum deformation in the array structure along 

the array line, and each component of the M-dimensional vector £ is ±1 with the 

same sign of the corresponding component of the first term of (4.3).

Therefore, the M-dimensional vector containing the maximum phase error in the 

presteered desired signal is given by

A max( /)  =  [ej2wfri -  ej2^ , . . . ,  -  e ^ f  . (4.4)

The 1-norm of the maximum phase error vector at frequency /  is therefore given by

M

£( f ) =  ™in y/2 — 2 cos(27r/(Tj — ?)). (4.5)—7T<27r/<?<7r ' ^%=\

4.2 .2  D erivation

In order to prevent cancellation of the desired signal components, we impose a 

high gain constraint over the whole frequency band of the desired signal for all the 

presteered received signal vectors with phase errors that belong to the set *4£ii ( /) . 

This constraint can be written as

\H(f,e.)\  >  1 VA(/) e Ae,i ( / ) ; / e  [fh f u\. (4.6)
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The optimal weight vector of the robust wideband beamformer can be obtained 

by minimizing the beamformer output power subject to the set of constraints in (4.6). 

This constraint set can be represented via infinite number of single constraints. Each 

constraint is imposed at a certain frequency /  and corresponds to the worst-case 

mismatch over A £,i(f)  at this frequency. Thus, we can write (4.6) as

min \ H ( f , 0, ) |> 1  V / £ [ / , , / „ ] .  (4.7)
A(/)eA,i(/)

In the presence of phase errors of the form (4.1), the array response towards the 

desired signal is given by

H ( f , 9 s) = ej2^ w T ( d ( f ) ® l M) + w T ( d ( f ) ® A ( f ) )

=  ej2^ w TC 0d( f )  + w TQ ( f ) A ( f )  (4.8)

where

Q( f )  =  d ( f ) ® I M e  CMLxM. (4.9)

We will consider each frequency component independently and find the m in im um  

value of \H( f ,9s)\ that corresponds to the worst-case mismatch at this frequency. 

Using the triangle inequality we can write

\e‘^ w TC 0d ( f )  + w TQ ( f ) A ( f ) \  > |u,r C „ d ( / ) | - |« , TQ ( / ) A ( / ) | .  (4.10)

Maximizing the second term in the R.H.S. of (4.10) over the mismatch set A e,i(f)  

yields

a (/^ X i(/) | ^ TQ ( / )A ( / ) | = £( / ) | |Q T(/)m ||oo. (4.11)

Combining (4.10) and (4.11), the minimum value of \H( f , 9s)\ over the mismatch set 

at frequency /  is given by

=  | ^ TC 'o d ( / ) |- £ ( / ) | |Q T( / ) ^ | | co. (4.12)
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\ \

Figure 4.1: Worst-case mismatch (2-dimensional case).

The worst-case mismatch vector that yields this minimum is given by

A  worst(/) =  (4.13)

where f a ( f )  = angle {ej27r/?mTC 0d (/)} , f a ( /)  =  angle {{QT( f ) w) p}, and p is the

index of the component of Q T( f ) w  with the largest absolute value. This is demon­

strated in Figure 4.1 for the case of a two sensor array.

The robust wideband beamforming problem can therefore be written as

min w t R x w
W

s.t. \wTC 0d{f )  \ - e ( f )  ||Q T( /)m ||oo > 1  V / G [//,/„ ]. (4.14)

Note that w TC o d ( f ) and Q T( f ) w  can be expressed as

w TC 0d ( f ) =  Wi ( /)  +  . . .  +  WM(/)  (4.15)

Q T( f ) w  =  [ W i ( / ) , . . . ,  W m (/) ] t  (4 .16)
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where Wm(/)  is the frequency response of the m th FIR filter of the array processor, 

i.e., Wm(/)  =  W ^ d ( / )  where W m =  [a>m(i,wm>2, ■ ■ ■ is the L x 1 vector

containing the coefficients of the m th FIR filter.

Substituting with (4.15) and (4.16) in (4.14), we can write the robust beamforming 

problem with the constraints expressed in the frequency domain as

mm
W , V

s.t.

w TR xw

|wm(/)| < V
M

£  w „ ( / j
m=1

e( f ) v  > 1 (4.17)

The gain constraint in (4.6) can prevent the cancellation of the desired signal 

components, yet it does not guarantee a distortionless response because the phase 

response of the array towards the desired signal is completely unconstrained. To 

alleviate this problem, we impose a Type 1 linear phase constraint on each of the M  

FIR filters (i.e., L must be odd) [86]. Although this constraint does not guarantee 

an overall linear phase response towards all the received signals, the overall response 

has nearly linear phase for the desired signal components with norm-bounded phase 

errors. In addition, we have shown in (2.68) that the imposed linear phase constraints 

are equivalent to NS1-PS derivative constraints in the case of an all-pass response, and 

therefore, they add more robustness to the beamformer against presteering errors.

Under the linear phase constraint, we can write the frequency response of the m th 

FIR filter as

L

— e ~ ^ Lc^  (u)m ,Lc +  2 ^ 2  u mMcos{2'Kf{k-Lc)Ts)) (4.18)
h=LcJr\

where (f>Le(f)  = 2^ f ( Lc  ~  1 )Ta.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical & Computer Engineering

We define the vector g( f )  6 MLc, and the matrices C rn G M.MLxL and B  G WLxLc as

g ( f )  = [1, c o s (2 7 r /T s) , . . . ,  cos(27r/(Lc -  1)TS)]T 

C m = I I  <S> em for m  =  1 , . . . ,  M

0 ••• 0 0 1 0 0 ••• 0

0 ••• 0 1 0 1 0 ••• 0

(4.19)

(4.20)

0 1 0 

1 0 0

0 1 0 

0 0 1

(4.21)

Note that C mw  = W™. Thus, we can rewrite (4.18) as

Wm(/)  =  e- j^ w TC mB g ( f ) . (4.22)

Also, noticing that C t =  C 0, and therefore, X))n=i Wm =  C qW, we can writeM

M

=  e- j ^ w TC 0B g ( f ) (4.23)
771=1

where w TC mB g ( f )  and w TC 0B g ( f ) are real.

Therefore, the robust beamforming problem in (4.14) with the additional linear 

phase constraints can be written as

mm
W , V

S.t.

w  R t-w

el S J l -  J f )) ® ) W = 0

- V  < w TC mB g ( f )  < V 

\wTC 0B g ( f )  \ -  e( f )v  > 1

Vm = 1,..., M; I = 1,..., Lc — 1 

V m =  1 , . . . , M \ f  e  

V / £ [ / , , / „ ] .  (4.24)

The problem is still non-convex due to the absolute value operator in the last 

constraint. However, we can see that if {to,n} is an optimal solution to the above 

optimization problem, then {—w , v }  is also an optimal solution. Also, examining the
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constraint Yfm=\ Wm(/)  > 1 +  c (/)u  and from the continuity of the Fourier trans­

form, it is clear that for a feasible weight vector w,  1 W m(f)  can either

be positive or negative over the entire frequency band [//, f u] and can not change sign 

at any frequency. From these two remarks, it follows th a t imposing a nonnegativity 

constraint on the phase-rotated real-valued sum of the Fourier transforms of the M  

FIR filters does not lead to any loss of optimality and yields the same global optimum 

solution of the nonconvex problem. Therefore, we can replace \wTC ()B g ( f )  | in the 

last constraint of (4.24) by w TC oB g ( f ) ,  and rewrite the constraint as w TC 0B g ( f )  

—e(f )v  >  1. The resulting problem is a convex optimization problem given by:

min w r R xw

Note that each of the last three constraint sets in (4.25) is an infinite number of lin­

ear inequality constraints imposed over the frequency band [//, f u}. These constraints 

are commonly referred to as spectral constraints [25]. For the case of temporal sam­

pling at the Nyquist rate, i.e., f s =  2f u and the case of fi =  0, the frequency interval 

[—fu, —fi] U Ifi■ fu] is a convex set. The spectral constraints can then be formulated 

using the results of [25] as a finite number of linear matrix inequalities (LMIs) and 

linear equality constraints. This will be further explained in the next section.

4.3 R obust B eam form er A lgorithm s

In this section, we discuss two algorithms for implementing the robust beamforming 

problem in (4.25). First, we will convert the quadratic objective function into a linear

s.t. Vm =  1, . . . ,  M; I =  1 , . . . ,  L c — 1

w TC mB g ( f )  < v 

w TC mB g ( f ) >  - v  

w TC 0B g ( f )  -  e( f )v  > 1

Vm =  1, . . . ,  M; /  € [/;,/„] 

Vm =  l , . . . , A f ; /  € [f i , fu] 

V / e  [/,,/„] (4.25)
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one. Let

R x = U TU  (4.26)

be the Cholesky factorization of R x [51]. Thus, we can write

w t R x w  =  | | t / m | | 2 . (4.27)

Obviously, minimizing ||C7to|| is equivalent to minimizing w TR xw.  Hence, introduc­

ing an auxiliary variable t, and imposing the additional constraint ||L/m|| <  t, we can 

convert (4.25) into the following problem:

min t
W , V , t

s.t. | |£ ^ | |  <  t

( i eU J i -  J D)  ® ( i = o

w TC mB g ( f ) < v 

w TC mB g ( f )  > - v  

w TC 0B g ( f )  -  e( f )v  > 1

4.3.1  S O C P -b ased  a lgorithm

The problem of representing the infinite number of spectral constraints in a finite 

manner can be handled through frequency discretization. Several discretization tech­

niques are available in the literature [56], [80]. A common, but ad-hoc, discretization 

approach selects a uniformly spaced grid {fi}^=1 over the frequency interval [fi , fu]-

81

Vm =  1, . . . ,  M; I = 1 , . . . ,  L c — 1 

Vm =  1, . . .  , M ; /  e  [fi jn]

Vm =  1, . . . ,  M; /  G [/,,/„]

V / € [fi , fu] (4.28)
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Therefore, we can write the discretized implementation of (4.28) as

min t
w , v , t

s.t. H t^ ll  — t

( [eTLc(Ji ~ Jf ) )  ® =  0 Vm =  1 , . .. , M] l  =  1 , . .. , LC -  1

w TC mBg( f i )  < v -  5 Vm =  1, . . . ,  M; i = 1 , . . . ,  N

w TC mB g ( f i ) >  - v  + 8 = =

w TC QB g ( f i ) -  e(fi)v > 1 +  8 Vi = 1 , . . . ,  N  (4.29)

where N  and 8 are chosen as follows. For a fixed N,  one must choose <5 to be small 

enough so that the over-constraining of the problem at the frequencies { / j } ^  does 

not result in significant performance loss. Yet, one must choose 5 large enough to 

guarantee the satisfaction of the spectral constraints for all frequency components 

not included in the selected grid.

The number of design variables is n v = M L  +  2, and the first constraint is an 

(ML +  l)-dimensional second-order cone (SOC) constraint followed by M ( L C — 1) 

linear equality constraints and (2M +  1 ) N  linear inequality constraints. The dis­

cretized implementation of the robust beamformer in (4.29) is therefore an SOCP 

problem [102], The number of iterations required to solve an SOCP problem us­

ing interior point methods is bounded by the square root of the number of con­

straints [73]. The computational complexity associated with each iteration is of 

O (nl q, ), where n v is the number of optimization variables and qt is the dimension 

of the ith  constraint [73]. Therefore, the worst-case computational load of (4.29) is 

of O (M 3-5L2C1,5) where C =  m ax{Y, L}.  This computational complexity is compa­

rable to the complexity of the classical LCMV algorithm which requires O (M 3L3) 

operations to compute the inverse of the data covariance matrix in (2.54) [84].
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4 .3 .2  S D P -b a sed  a lgorith m

In [25], Davidson et. al. proposed a technique to precisely enforce piecewise constant 

and piecewise trigonometric polynomial spectral constraints in a finite and convex 

manner. This technique avoids any heuristic approximations involved in discretization 

techniques. However, it requires the spectral domain [—/«, —//] |J  [//, /«] to be convex, 

which is true for the common case of temporal sampling at the Nyquist frequency. In 

the following, we will briefly review several results of [25] and show how they can be 

applied to our robust beamforming problem with f u = f s/2.

First, we approximate e( f )  over the frequency interval [—f s/ 2 , f s/2] as a series 

expansion using the basis functions {cos(2nfkTs)}^^01 as [93, p. 313]

Lc—1
) =  J ]^ c o s (2 7 r /fT s) (4.30)

;=o

where

1 r fs / 2
bo = T  /  e{f )df  (4.31)

Js J —f s/2

bi =  \  2 e(f)cos(27rfiTs)df, i = 1 , . . . ,  L c -  1. (4.32)
Js J —f s/2

The robust beamforming problem with the approximate mismatch norm is given by 

min t

s.t. ||C^^|| <  t

( ( e l ( J ,  -  J?))  ® (l l , S lm) ) w  = 0 

w TC mB g ( f ) <  v 

w TC mB g ( f )  > - v 

. w TC 0B g ( f )  -  vbTg( f )  > 1

where b = [b0, h , . . . ,  6Lc_i]T.
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We define the lower triangular (n + 1) x (n + 1) Toeplitz matrices { P o,n}”=o as

[Pk,n\hl ~  <

r«=o

1 if h = k + I
for h, I = 1 , . . . ,  n  +  1 (4.34)

0 otherwise

Note that ( P k,n,Y)  =  Yli=i+1 \X)i+ki ôr ^  g 1 ^ +1 x̂^ +1* where the inner prod­

uct of two real matrices ( A , B )  is defined as the trace of A TB  [51]. Thus, {Pk,n, Y )

is the sum of the elements on the kth lower diagonal of Y .  Also, we define the linear

operator r (y )  : R n+1 ^  R("+l)x(n+l) ag
n

r ( l /)  =  VlPo,n +  2 X  2fc+l-P*,n, (4-35)
i—1

and thus the adjoint operator y  =  r* (V ) : R(n+1)x(ri+1) i—> RTl+1 is given by

yx =  (Po,n, Y )  (4.36)

yi =  2(P<_i,n, y )  for i = 2 , . . . , n  +  l. (4.37)

Next, let us define the two scalars 7 0 (do) and 7 1  (do) and the family of operators 

E (j/;d 0) : Rn + 1  Rnxri as

7 o(do) =  2cos(d0)(l -  cos(d0)) (4.38)

7 i(^o) =  -2 (1  -  cos(do)) (4.39)
/  71 — 1

3(2/; do) = 7o(d0) I yiPo,n-l + 2 X  Vi+lP *,n-l
V i= 1
/  n  n —2  \

+  7l(^o) I 2/i+l-Pi-1,71-1 +  X !  Vi+lPi+1,72—1 j • (4.40)
\  i=1 i=0 J

The adjoint operator y  =  S * ( Y ; d0) : RraXn 1—>• Mn + 1  is defined such that 

yx = 7o(do)(Po,n-i,lr ) + 7 i W ( P i , n - i , l A)

yk = 27 o(d0) ( P fc_i,„_i, Y )  + 7 1  (d0) ( (P * -2)n - i , Y )  + { P k,n- i , F ) )  k = 2 , . . .  ,n  -  1

Vn — 27o(do) (^71-1,71-1 J Y )  +  7 i(do)(-Pn- 2,n-l> Y )

yn+1 =  7 l(^o)(-Pn-l,n-l,^)- (4.41)
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Let /C(d0) describe the set of coefficients of real trigonometric polynomials with 

the form P k  cos ((k — l)d) that are nonnegative on the intervald G [do, 7r],

n+1

^^PkCos((k  — l)d) >  0, for all d G [do,7r]  ̂ (4.42)
k= 1

The set /C(do) can be interpreted as a convex cone in Mn+1. In [25], Davidson et al. 

presented an alternative LMI description of /C(do) given by

/C(do) =  { p e  Rn+1 p  = T*(Y) +  3*(X ; do) for some Y  G S {+ ^ X n̂+1] x  G <S”xn}

(4.43)

where <S”Xn is the set of n x n  real symmetric positive semidefinite matrices.

Note that each of the 2M  + 1 spectral constraints in (4.28) is in the form of a 

trigonometric polynomial (with Lc terms) inequality. Therefore, using the above de­

scriptions of the set of real nonnegative trigonometric polynomials in (4.42) and (4.43) 

with d =  2irfTs, and thus /  G [//, /s/2] n d G  [27if{Ts, 7r], i.e., do =  2irfiTs, and intro­

ducing the auxiliary matrices {Ŷ G RicXic}̂ 1+1 and {X; G 

we can reformulate the zth spectral constraint as a linear equality constraint and 

two positive semidefiniteness constraints on the two auxiliary matrices X; and Y t . 

Therefore, the LMI implementation of the robust beamformer is given by

min t

s.t. IID'mH < t

(e Lc ( J i  ~  J I ) )  ® (1mOto))io = 0 Vm = 1,... , M ] l  =  1,... , L C — 1 

YifXi t0 Vi  =  1 , ,  2 M  + 1

uei - B T C Tm w  =  T*(Ym) + H*(Xm; 27i f i T s ) V m  = 1,..., M

v e x + B T C Tm w  =  r * ( Y M + m ) +  3*(XM+m; 2tr/,Ts) V m  =  1,..., M

B t C q W  - e i - v b  =  T * ( Y 2M +i) + S*(X2M+i;27t/,T8) (4.44)

where the optimization variables are t, v, w,  { X j } ^ +1, and { X * } ^ +1. Note that
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each of the last three constraint sets is an Lc-dimensional linear equality constraint. 

The optimization problem in (4.44) is a semi-definite programming (SDP) problem 

that can be solved efficiently using interior point methods [102]. The computational 

complexity of one iteration of SDP is given by O (n^ ]T\ qf) where nv is the number 

of optimization variables and g* is the dimension of the ith  constraint. The upper 

bound for the number of required iterations is given by O (vOCi (h) [73]. Thus, the 

worst-case complexity of (4.44) is of O  (M 4 5L6-5).

Note that if temporal sampling is done at a rate higher than the Nyquist rate 

we can still apply the above LMI implementation of the spectral constraints over the 

whole frequency interval [f i , f s/ 2]. The excess constrained frequency band does not 

result in any significant performance degradation as will be demonstrated through 

our numerical examples.

4.4 S im ulations

We consider a linear microphone array with M  = 10 and L = 9. The sensors are 

assumed to be equi-spaced with spacing c j f s where f s =  8000 Hz. The array is 

presteered to the direction 8q =  —30° and the presteering delays are quantized to 256 

levels. The desired signal is a wideband signal with SNR equal to 10 dB and constant 

power spectral density over the frequency band 800-4000 Hz. A wideband interference 

signal is received from the direction 6\ = 30° with a constant spectral density over 

the frequency band of interest and interference-to-signal ratio (ISR) equal to 20 dB. 

A uniformly-spaced frequency grid with N  — 11 points is selected to discretize the 

spectral constraints and a value of S = 10-3 is chosen. A sample size of N s =  16384 is 

used for calculating the sample covariance matrix. For the CPRMV beamformer, 512 

subbands are considered and the samples are divided into 32 batches. The covariance 

matrix of each subband is formed using the available 32 samples for that subband.
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Figure 4.2: Mismatch norm and its series expansion approximation.

The desired signal is chosen as a chirp signal s(k) = cos(2nfikTs +n (jck2T 2) with 

the chirp rate (3C =  (Ju — f i ) / (NsTs), whereas the interference signal is generated as 

the sum of sinusoidal harmonics with random phases and equal powers occupying the 

band between 800 and 4000 Hz. The simulation results are averaged over 200 Monte 

Carlo runs.

4.4 .1  R o b u stn ess  aga in st array ca libration  errors

We first consider the effect of the look direction error 0O — 6S on various beamformers. 

We assume perfect knowledge of the sensor locations and no quantization effects 

on presteering delays. Figure 4.2 shows the mismatch norm calculated from (4.5) 

with Ad  =  2°, a z = 0, and AT =  0, and its approximation by the series expansion 

of (4.30). We can clearly see that the expansion approximates e( f )  over the desired 

signal frequency band very well. Figure 4.3 shows the average output SINRs versus
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Figure 4.3: Average output SINR versus look direction error.

the look direction error. We can clearly see the improved performance of the proposed 

algorithm compared to all other algorithms (even those designed specifically to combat 

look direction errors). We can also notice a close resemblance of the two proposed 

implementations of our robust beamformer. For the case of zero look direction error, 

the decrease in the output SINR of our beamformer (due to the additional robustness 

constraint) compared to the NS1-PS derivative constrained beamformer is less than 

1 dB. On the other hand, for the case of classical second-order directional derivative 

constraints the decrease in the output SINR is more than 10 dB.

Next, we investigate the effect of sensor location errors on our beamformer. We 

also consider a look direction error of 2° in addition to presteering delay quantization 

effects. The sensor location errors are selected such th a t they correspond to the 

maximum array deformation, i.e., (Az  — a zc /2 fu)C>. The robustness set is formed 

using A# =  2°, a z =  0.075, and A T  =  maxT’i/256. Figure 4.4 shows the average
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Figure 4.4: Average output SINR versus relative sensor location error.

output SINR versus the relative sensor displacement. We can clearly see from this 

figure the improvements achieved by our beamformer compared to the other tested 

beamformers.

Finally, we display the array response patterns for a look direction error of 4°, 

sensor location errors of 3.75% with respect to the presumed inter-element spacing, 

and presteering delay quantization effects. Figures 4.5-4.8 show the magnitude and 

phase responses in the presumed look direction and the actual desired signal direction 

for the NS1-PS derivative constrained, the diagonally loaded LCMV, the CPRMV, 

and our robust beamformer, respectively. We can notice from Figure 4.8 that our 

robust beamformer has a nearly distortionless response towards the desired signal 

despite the mismatches, whereas other beamformers attenuate the high and interme­

diate frequencies of the desired signal leading to a substantial decrease in the output
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Figure 4.5: Frequency response of the NS1-PS derivative constrained LCMV beam- 

former.

SINR. It is also clear from these figures how the linear phase constraints can main­

tain a linear phase response towards the desired signal components in spite of the 

mismatches in the array manifold and the finite sample support. On the other hand, 

the CPRMV beamformer suffers from relatively-high phase nonlinearities. Figure 4.9 

shows the power response of different beamformers versus the arrival angle. We can 

clearly notice an improved performance of our robust beamformer with respect to the 

other techniques; our beamformer yields the highest gain towards the desired signal 

while suppressing the interference and maintaining a relatively low sidelobe level.

4 .4 .2  S en sit iv ity  to  th e  choice o f  th e  u n certa in ty  set

In this example, we investigate the effect of the amount of provided robustness on 

the performance of our beamformer. The look direction error is 4°, worst-case sensor
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Figure 4.6: Frequency response of the diagonally-loaded LCMV beamformer.
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Figure 4.7: Frequency response of the CPRMV beamformer.
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Figure 4.8: Frequency response of the robust beamformer (LMI formulation).
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Figure 4.10: Output SINR versus maximum mismatch norm.

displacements are 7.5% of the sensor spacing, and the presteering delays are quantized 

to 256 levels. The data covariance matrix is computed assuming an infinite sample 

size. The infinite sample size covariance matrix is formed as

R x  — R s  +  R l  +  O'nl (4.45)

where the desired signal covariance matrix R s and the interference covariance matrix 

R i  are given, respectively, by

fs

/
J 0 jj

df (4.46)

H
H i =  /  %»1( / ) ( d ( / ) ® ( r ( / ) o ( / , « 1) ) ) ( d ( / ) ® ( r ( / ) o ( / , # 1)))  df (4.47)

''-'if'

and the integrals are evaluated through discretization over a grid of 201 points.

Figure 4.10 shows t.he output SINR of our proposed robust beamformer against 

different values of s ( f s/ 2) that correspond to different choices of the uncertainty set,
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as well as the output SINRs for the ideal LCMV beamformer with perfect choice of 

presteering delays, the LCMV beamformer with NSl-PS derivative constraints and 

the diagonally loaded LCMV beamformer with an optimal choice of the diagonal 

loading factor. In addition, it also shows the value of e( f s/2) computed from (4.5). 

Note that in practical scenarios the optimum amount of diagonal loading can not 

be easily determined. In this simulation, it was evaluated through multiple trials 

with different values of diagonal loading. We can notice from Figure 4.10 that the 

use of the uncertainty set corresponding to the true mismatches is rather excessive 

and does not yield the highest output SINR. This can be attributed to the effect of 

the linear phase constraints which provide additional robustness that is not taken 

into account in the robustness set. However, we can clearly see tha t the proposed 

beamformer is not very sensitive to the exact choice of the uncertainty set, and the 

over-estimation or under-estimation of the amount of mismatches does not lead to 

significant degradation in the output SINR of the beamformer.

4 .4 .3  C om parison  b etw een  th e  p rop osed  a lgorith m s

In this example, we compare the performance of the two proposed beamformer imple­

mentations for different desired signal bandwidths. In particular, we investigate the 

effect of extending the frequency range of the spectral constraints beyond the highest 

frequency of the desired signal on our LMI implementation. We consider the same 

scenario as in the previous simulation. The highest frequency f u is changed between 

3000 and 4000 Hz while the lowest frequency of the desired signal and the sampling 

frequency are kept constant at 800 and 8000 Hz, respectively. For the discretized 

implementation of the robust beamformer a frequency grid with spacing 100 Hz that 

extends between /; and is used. For the LMI implementation, the spectral con­

straints are imposed over the frequency band [fi , fs/ 2].
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Figure 4.11 shows the output SINR versus f u. We can clearly see that the perfor­

mance of our two beamformer implementations is nearly identical. We can also see 

tha t this performance is not degraded by extending the spectral constraints beyond 

the desired signal bandwidth. This is evident from the quite close values of the output 

SINR of both formulations. Figure 4.12 displays the output desired signal and inter­

ference powers versus f u. We can notice the increase in the output interference power 

as f u approaches f sj 2. This can be attributed to the increase in the jamming signal 

bandwidth which increases the dimension of the interference subspace and, therefore, 

the beamformer can not place very deep nulls in the direction of the interference over 

the whole frequency band of interest [11]. On the other hand, the output desired 

signal power is nearly constant as the robustness constraint maintains a high gain for 

the desired signal.
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4 .4 .4  R o b u stn ess  aga in st fin ite  sam ple size

In this example, we investigate the effect of finite sample size on different robust beam- 

forming algorithms. Perfect knowledge of the array manifold is assumed when select­

ing the presteering delay values and no quantization effects are considered. Therefore, 

the only mismatches considered are due to the finite sample size. A diagonal loading 

value of 10 dB is selected for the diagonally loaded LCMV beamformer, and our ro­

bustness set «4£ii ( / )  is formed with A9 =  1°, a z = 0, and AT =  0, yielding a value 

of e( fa/ 2) ^  1.2. All simulation results are averaged over 100 Mbnte Carlo runs.

Figure 4.13 shows the average output SINR versus the sample size. We can clearly 

see that the robustness constraint used in our beamformer can combat finite sample 

size effects although it was originally proposed to provide robustness against uncer­

tainties in the array manifold. This is due to the fact that errors in the choice of the 

presteering delays lead to errors in the data covariance matrix. This can be seen from 

(4.46) and (4.47). Therefore, providing robustness against presteering errors leads to 

robustness against finite sample support. This fact also explains the robustness of 

the NS1-PS derivative constrained LCMV beamformer against finite sample size as 

compared to the LCMV algorithm with gain-only constraints.

4 .4 .5  S en sitiv ity  to  th e  d esired  signal pow er

We investigate the performance of our beamformer for different values of the desired 

signal SNR for a look direction error of 4°, worst-case sensor displacements that are 

7.5% of the sensor spacing, and presteering delay quantization effects. The desired 

and interference signals are chosen as in Subsection 4.4.1 but with ISR equal to 0 dB. 

All simulation results are averaged over 100 Monte Carlo runs. Figure 4.14 shows the 

average output SINR for different beamformers versus the desired signal SNR. We 

can see from this figure the performance improvements of the proposed beamformer
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Figure 4.14: Average output SINR versus the desired signal SNR.

as compared to the other beamforming algorithms tested. These improvements are 

quite visible at high SNRs as the robustness constraint can effectively preserve the 

desired signal and prevent its cancellation despite the mismatches. At the same time, 

other beamformers suppress the desired signal which results in a decreased output 

SINR.

For the same scenario, we evaluate the normalized mean square error (NMSE) 

which is defined as
1 n„

NMSE 4  ^  (aas0(kTa -  Td) -  y { k ) f  (4.48)
° s s fc=l

where a s and Td are the average beamformer gain and time delay towards the desired 

signal. Figure 4.15 shows the average NMSE versus the desired signal SNR for dif­

ferent beamformers. We can notice the effect of the phase distortions of the CPRMV 

beamformer on its NMSE where the increase in the output SINR in Figure 4.14 is not 

translated into a corresponding decrease in the NMSE. The improved performance of
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Figure 4.15: Average NMSE versus the desired signal SNR.

our beamformer in terms of its output SINR, coupled with its distortionless response 

and linear phase results in a superior performance in terms of the NMSE.

4.5 C onclusion

In this chapter, we have presented a novel wideband beamformer that in contrast with 

earlier approaches provides an amount of robustness directly linked to the amount of 

uncertainty in the array manifold. The problem is solved through worst-case perfor­

mance optimization and is formulated as a convex optimization problem. We have 

provided two algorithms for our proposed beamformer; an SOCP- and an SDP-based 

algorithm. Both algorithms can be implemented efficiently with polynomial com­

plexity using well-established interior point methods. Simulation results have been
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presented that show an improved performance of our beamformer compared to ear­

lier robust beamforming algorithms. Simulation results also indicate that the two 

proposed algorithms yield nearly the same weight vector estimate with an appropri­

ate choice of the discretization grid used in the SOCP algorithm. This makes the 

SOCP algorithm more favourable due to its lower computational complexity which is 

comparable to the complexity of the classical LCMV beamforming algorithm.
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Chapter 5

Com putationally Efficient Online 

Algorithm s for Robust W ideband  

Beamforming

5.1 In troduction

In Chapter 4, we have presented a wideband beamformer with robustness against var­

ious array calibration errors. This beamformer is similar to the narrowband beam- 

formers proposed in [74] and [116] in that its robustness is directly related to the 

amount of uncertainties in the array manifold. We have also presented two algo­

rithms for our beamformer. The first algorithm is based on discretization of the 

spectral constraints imposed over the whole frequency band of the desired signal, 

while the second ensures that these constraints are satisfied at every frequency point 

at the expense of increased computational cost. We have shown through numerical 

examples that with a proper choice of the discretization grid, the performance of 

both algorithms is nearly identical. However, both algorithms are not convenient for
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nonstationary environments where the beamformer weight vector has to be updated 

whenever a new snapshot is received.

In this chapter, we modify our wideband beamformer in order to derive an online 

algorithm suitable for nonstationary scenarios that are often encountered in radar, 

sonar, speech processing, and wireless communications. Our new beamformer is de­

rived using the same guidelines as those in Chapter 4 but using a 2-norm uncertainty 

set to describe the phase errors in the output of the presteering delays instead of the 

1-norm uncertainty set used in Chapter 4. This yields a formulation that is more 

convenient for adaptive implementation. Our beamformer replaces the distortionless 

response constraint of the LCMV algorithm with an SOC robustness constraint im­

posed over the whole frequency band of the desired signal. A discretization grid is 

used to convert the robustness constraint to a finite number of constraints. The re­

sulting problem is an SOCP optimization problem that can be solved with polynomial 

complexity using interior point methods [83].

We show that the SOC robustness constraints are always active , i.e., are satisfied 

with equality, by the optimal solution of the beamforming problem. This enables us 

to develop a state-space model for the robust wideband beamforming problem similar 

to that we proposed in Chapter 3, where the discretized robustness constraints are 

incorporated within the measurement equation of the model. Due to the nonlinearity 

of these constraints, a first- or second-order EKF is used to solve for the optimal weight 

vector iteratively with reduced computational cost compared to earlier interior point 

methods-based algorithms of the robust beamformer. Simulation results are presented 

illustrating an improved performance of the proposed beamformer and its advantages 

over earlier methods in nonstationary environments.
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5.2 A ltern ative  Form ulation o f th e  R ob u st W id e­

band B eam form ing P roblem

5.2 .1  D erivation

Instead of using the uncertainty set A Sti ( f )  defined in (4.2) to describe the phase 

errors in the presteered desired signal components, we define another uncertainty set

A . M )  =  { M f )  6 C M I ||A (/) || < £ (/)}  . (5.1)

We impose a gain constraint over the whole frequency band of the desired signal 

for all the presteered data vectors with phase errors belonging to the set This

constraint can be written as

\ H ( j , e ) \ > l  V A ( / ) £ A , . ( / ) ; / e [ / J J .  (5.2)

The optimal weight vector of the robust wideband beamformer can be found by 

minimizing the array output power subject to the set of constraints in (5.2). We use 

the worst-case performance optimization approach similar to that we used in (4.7). 

The minimum value of \H(f,9)\  over the mismatch set A e A f )  can be obtained by 

noticing that

\H(f,9)\  = \wT ( d ( f ) ® e j2^ l M) + w T { d ( f ) ® A ( f ) ) \

= \ e ^ w TC o d ( f ) + w TQ ( f ) A ( f ) \

> \wTC 0d(f) \  -  \wTQ ( f ) A ( f ) \  (5.3)

> \wTC 0d ( f ) \ - e { f ) \ \ Q T(f)w\\ (5.4)

where Q( f )  is defined in (4.9), and (5.3) and (5.4) follow from the triangle inequality 

and Schwartz inequality, respectively [51]. The worst-case mismatch vector which
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satisfies (5.3) and (5.4) with equality is given by

A wor„(/) = (5.5)
IIQ  ( / H I

where 4>2{f)  =  angle { w TC 0d ( f ) }  and ^ 2( /)  =  angle { Q T( f ) w} .

Therefore, we can write the robust wideband beamforming problem as

min w T R xw
W

s.t. \wTC 0d( f )  \ - e ( f )  ||Q T(/)m || > 1  V /  G [fi , fu]- (5.6)

Next, we impose the linear phase constraint of (2.68) on each of the M  FIR filters of

the array processor. Using this constraint and (4.16), we can write

||Qt ( ) > | |  = ||AT(/)C Tuij| (5.7)

where A (/)  =  I m  <S> (B g ( f )) E  ]g>M-LxM; and g (f)  and B  are defined in (4.19) and 

(4.21), respectively. The matrix C  E is defined as

C ± [ C 1, C 2, . . . , C M] (5.8)

where the set of matrices {C'm}^=1 is defined in (4.20).

Therefore, using (4.23) and (5.7), we can rewrite the robust beamforming problem 

in (5.6) with the additional linear phase constraints as

min w TR xw
W

s ( ( eL ( J : -  J T)) ® W 11- ) ) ”  =  0 Vm =  =  1........ Lc ~  1

|9 T( /) i? TC ’’« , | - £ ( / ) | |A 3'( / ) C T! o | |> l  V / £ [ / , , /„ ]  (5.9)

The problem is still nonconvex due to the absolute value operator in the last 

constraint. Following the same argument that is used in Chapter 4, we can see that 

if w  is an optimal solution of the above optimization problem, then —w  is also an
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optimal solution. Also, examining the second constraint in (5.9), Ylm=i W m(f)  > 

1 +  e( f )  ||Ar (/)C 'Tto||, and from the continuity of the Fourier transform, it is clear 

that for a feasible weight vector w,  gT( f ) B TC ^ w  can either be positive or negative 

over the whole frequency band [fi , fu\ and can not change its sign at any frequency 

point. From these two remarks, replacing \gT( f ) B TC ^ w \  in the last constraint of 

(5.9) by g T( f ) B TC ^ w  does not cause any loss of optimality. The resulting problem 

is convex and is given by

min w rR xw
W

s -*~ ( ( eL ( J < ~  J f ) )  ® (liir0 ™))® =  0 Vm =  1 , . . . , M \ l  =  1, . . .  , L C — 1

g T( f ) B TC Z w - e ( f ) \ \ A T( f ) C Tw \ \ > l  V / e  [/,,/„] (5.10)

T h eo rem  5.1 In the case of uncorrelated desired and interference signals, the ro­

bustness constraint is satisfied with equality at the optimal point of (5.10) for every 

frequency f  G [/;,/„].

P roof. See Appendix A.

5 .2 .2  S O C P -b ased  a lgorithm

In this section, we present a batch implementation for the robust beamforming prob­

lem similar to the implementations presented in Section 4.3. First, we note that the 

robustness constraint in (5.10) is imposed over an infinite number of frequency points 

in the frequency band of the desired signal. This constraint can be represented in 

a finite manner through discretization over a uniformly spaced grid {/;};!=i over the 

range of the continuous parameter [80]. We have shown in Section 4.3 that with a 

good choice of the discretization grid we can obtain a performance similar to that 

obtained when the constraints are enforced at every frequency point. The discretized
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robust beamforming problem can therefore be written as 

min w t R xw
XV

s.t. ( [ e l c( J t -  J j ) )  <8> = 0 Vm =  1, . . .  ,M;Z =  1, . . .  , L C -  1

£ (/i)||A T( / i)C Tm|| <  g T( f i ) B TC%w -  1 -  8 Vf =  l , . . . , i V  (5.11)

Using the Cholesky factorization of the covariance matrix in (4.26) and introducing 

the nonnegative scalar variable t, we can convert (5.11) into the following problem

min t
w,t

s.t. ||£^iu|| <  t

{(eLc(J i -  J D )  ® { tTM0,m) ^ w  =  0 Vm =  1 , . . . ,  Af; I = 1 , . . . ,  L c — 1

£{fi)\\AT{f i )CTw\\ < gT( f i ) BTC l w - 1 - 8  \fi = l , . . . , N  (5.12)

The discretized problem in (5.12) can be solved as an SOCP convex optimization 

problem [102]. The number of optimization variables is equal to M L  + 1. The first 

constraint is an ( ML  +  l)-dimensional SOC constraint, followed by M ( L  —1)/2 linear 

equality constraints and N  SOC constraints, each of dimension M  +  1. The compu­

tational complexity of (5.12) is, therefore, of O ( m 3L 2N^(^J where £ =  max(iV, L).

5.3 S tate-Space M odel for R obust  

W ideband B eam form ing

The main disadvantage of all the earlier robust beamforming techniques presented in 

(4.29), (4.44), and (5.12) is that they are not iterative. Therefore, whenever a new 

sample is received, the sample covariance matrix has to be updated and the whole 

optimization procedure is repeated to estimate the new weight vector. This represents 

a major drawback in nonstationary environments where the weight vector has to be
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repeatedly updated with low computational cost. In this section, we derive an online 

implementation of the robust wideband beamformer based on state-space modelling 

of the optimization problem in (5.11).

We start by eliminating the linear phase equality constraints in (5.11). We define 

the matrix D  G l MLxMic as

D  =  B ® I m  (5.13)

Any vector w  G MMLx1 satisfying the linear phase constraints in (5.10) can be ex­

pressed as w  = D v  where v  G x 1 contains the last M L C elements of the weight 

vector w  tha t can be chosen independently while satisfying the linear phase con­

straints. Using Theorem 5.1, we can write the robust beamforming problem as

min v t D t R xD v
V

s.t. hi(v) = 1 + 8 Vi =  l , . . . ,AT (5-14)

where

hi(v) = g T( f i )BTCq D v  — £(fi)\\AT( f i )CTDv\\  (5.15)

=  r T(fi)v -  £(fi)\\AT(fi)v\\, (5.16)

r ( f i ) G MMicXl =  g ( f {) <g> 1M, g ( f t) =  [1, 2 cos(27r/;T),. . . ,  2cos(27r/j(Lc — 1)T)]t , 

and A(/j) =  g(fi) <S> I m (see Appendix B).

A state-space model describing the above optimization problem is given by the 

following process equation

v(k  +  1) =  v(k)  +  n v(k) (5-17)

where n v(k) is the process noise that allows tracking the optimal solution in non­

stationary environments, and is assumed to be white Gaussian with zero mean and 

covariance matrix Q v = <j I I mlc-
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The associated measurement equation is given by

0 x T(k)Dv(k)

1

O

i

1 + 5
=

hi(v(k))
+

7̂71,1 (&)

1 + 5 _ hN(v{k)) W"m,N (^0

(5,18)

which can be written in matrix form as

2  =  h(x(k ) , v (k ) )  +  n m(k) (5.19)

where nmfi{k) is the negative output of the beamformer and {nm,i{k)}f=l represent 

the errors in satisfying the discretized robustness constraint. They can be modelled 

as zero mean independent white Gaussian sequences with covariance matrix Q m =  

diag{cr^0,cr^ 1;

Running a state estimator on the model given by (5.17) and (5.19) yields an 

estimate of v(k)  that minimizes the uncertainties due to the process and measurement 

noises. Minimizing the mean square value of n mfi(k) is equivalent to minimizing 

the output power of the beamformer, while minimizing the mean square values of 

{nm,i{k)} 1̂zi minimizes the MSE in satisfying the robustness constraint. Thus, the 

resulting weight vector estimate v(k)  solves the optimization problem in (5.11) with 

the covariance matrix R x replaced by the ^-snapshot sample covariance matrix.

Due to the nonlinearity of the measurement equation, the optimal state estima­

tor has to compute and iteratively update the probability density function (pdf) 

of the state vector p (v( k ) |{a?(z)}f=0). If the initial pdf p (u(0) |cc(0)) is available, 

then p{y(k)  |{*(i)}f=0) can be obtained recursively in two stages: prediction and 

update [5]. Thus, given p (v{k  — 1) |{a?(z)}*1Tq ), the prediction step propagates the 

pdf one step in time using the state equation to estimate p (v{k ) ({ ^ ( i)} ^ 1). The 

update step corrects the predicted pdf using the newest measurement x{k)  to yield 

p (v (k )  |M 0 } t o ) .
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5.3 .1  E K F -b ased  a lgorith m

The optimal estimator is merely a conceptual solution and can not be evaluated 

analytically in our case, and therefore, we have to resort to a suboptimal approach. 

A recursive estimate v(k)  of the state vector can be obtained using the EKF [6, p. 

381]. The EKF is based on local linearization of the measurement equation around the 

current estimate using the first-order term in the Taylor expansion of the measurement 

equation. Thus, the measurement equation can be approximated as

z  ss h(x(k) ,  v ( k  — 1)) +  H v(v(k — 1)) (v( k ) — v(k  — 1)) +  n m(k) (5.20)

where the predicted measurement and the filter gain are given, respectively, by

Here, the innovation covariance matrix S ( k ) and the predicted weight vector covari­

ance matrix P(k \k  — 1) are given by

where H v(v(k — 1)) is the Jacobian of the vector h( x ( k ) , v (k  j) evaluated at the latest 

estimate of the state. It is given by

(k-l)\(fi)A (fi)

vT(k-l)MfN)A.T(fN)

Starting with an initial random weight vector estimate v(0) and its associated 

initial covariance P(0 |0), the estimate is updated recursively through

v(k)  =  v(k  — 1) +  G{k){z  — z(k\k — 1)) (5.22)

z(k\k — 1) =  h( x (k ) , v ( k  — 1))

G{k)  =  P(k \k  — l ) H ^ ( v ( k  — l ) ) S ~ 1(k).

(5.23)

(5.24)

S(k)  = H v( v { k - l ) ) P ( k \ k - l ) H l ( v ( k - l ) )  + Q m 

P { k \ k - 1 )  = P ( k - l \ k - l )  + Q v.

(5.25)

(5.26)
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The updated weight vector covariance can be expressed as

P(k\k)  = P ( k \ k - l ) - G { k ) S ( k ) G T{k). (5.27)

Typically the value of N  is much lower than M L C and, thus, the computational

complexity of one iteration of the EKF-based beamformer is of O (M 2L2CN ) which is 

much lower than the complexity of the SOCP formulation in (5.12). This makes it 

more suitable for nonstationary scenarios.

The NIS of the EKF is defined as

e(k) = (z  — z(k\k  — l ) ) TS _1(£;)(z — z(k\k  — 1)). (5.28)

Under the linearized approximation of the measurement equation in (5.20) and the 

Gaussian assumptions of the model, the NIS is chi-square distributed with N  + 1 

degrees of freedom. The consistency of the beamformer can be checked through 

a chi-square test on the NIS [6, p. 236]. An exponential window can be used to 

evaluate the NIS of the beamformer as

ea{k) =  aea(k — 1) +  (z  — z(k\k  — 1))HS ~ 1(k) (z  — z(k\k  — 1)) (5.29)

where the effective window length is given by Therefore, under the above men­

tioned linear Gaussian assumptions, ea(k) can be approximated using first-order mo­

ment matching as chi-square distributed with | ~ d e g r e e s  of freedom.

A random weight vector can be used to initialize the adaptive algorithm. The 

associated covariance P(1|0) can be selected as P(1|0) =  PqI  with j30 chosen so 

that the NIS of the first iteration is close to the expected value of the chi-square 

distribution with 77 +  1 degrees of freedom. Therefore, ignoring the measurement 

noise covariance, we can write

=  ]y-pY (z ~ i:(1l0))T ( ^ ( :E(1)>'&(0))-H’̂ (a::(1) ^ ( 0)))  ( ^ - ^ ( i l 0))- (5-30)
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The parameters of the Kalman filter can be chosen as follows. The parameter 

cr2 which controls the process noise covariance is selected according to the operating 

environment as discussed in Section 3.3. The parameter <t^0 should be chosen in 

the range of the output power of the beamformer. Assuming that the interference 

signals are completely nulled-out by the beamformer and that the desired signal passes 

without any distortion, the output power is given by a 2 +  ofJ|.Dt>||2. However, it will 

be demonstrated through simulations that the filter is not very sensitive to the exact 

choice of cr^ 0, and that a satisfactory performance can be obtained within a wide 

range of selection of this parameter.

On the other hand, the values of determine the MSE in satisfying the

discretized robustness constraint. Note that treating the robustness constraints as 

perfect observations, i.e., (er^, =  0 } ^ ,  can lead to convergence problems [39]. This 

can be attributed to the errors induced by the truncation of the Taylor series ex­

pansion after the first term. Moreover, the Jacobian in (5.20) is evaluated at the 

estimated value of the state and not at its true value which results in additional 

errors. Therefore, using very small values for might prevent the estimate

from moving away from a badly linearized constraint surface resulting in convergence 

problems. Simulation results indicate that a typical choice of i*1 the order of

10-3 ensures that the constraints are satisfied with enough accuracy without causing 

numerical problems.

5.3 .2  Second-order E K F -b ased  a lgorithm

A second-order EKF can be used to estimate the beamformer weight vector. This re­

duces the truncation error in the Taylor series expansion of the measurement equation 

and thus reduces the sensitivity of the algorithm to the choice of its parameters [6, p. 

387]. The second-order EKF approximates the nonlinear function in the measurement 

equation by its second-order Taylor expansion around the latest state estimate. The
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approximate measurement equation is given by

z  «  h(x(k) ,  v(k  — 1)) +  H v(v(k  — 1)) (v( k ) — v(k  — 1))

1 N
+ -  5 > n+1(v(fc) -  -  1 ) f H ^ ( v ( k  -  l)){v(k)  -  v(k  -  1)) +  n m(k) (5.31)

n = 0

N
1)) J- are the Hessian matrices of the N  +  1 components of the

n = 0
where

vector h(x(k) , v (k) )  computed at the latest estimate v(k  — 1). They are given by

H <2 =  0 (5.32)

A ( f n)AT( fn)v(k  -  1 )vT(k -  l )A (/n)AT( /n)Hg>(v(k-1)) = e(fny- ■T
| A  ( f n ) v ( k -  l ) | p

-  g(/n) (/n) Vn =  l , . . . , i V  (5.33)
IIA ( fn) v ( k -  1)||

The second-order EKF implementation of the robust beamformer is identical to 

the EKF algorithm in (5.22) (5.27) except for two modifications where the second- 

order term of the Taylor expansion of the measurement vector appears in the com­

putation of the predicted measurement and the innovation covariance matrix. Thus, 

equation (5.23) is replaced by

z (k \k  — 1) =

x T(k)Dv(k  — 1)

h i (v(k  -  1)) +  0.5 tr  ^ H ^ l ( v ( k  -  l ) )P(k\k  -  1) j
(5.34)

hN(y(k -  1)) +  0.5 tr { H ^ { v { k  -  l ) )P(k \k  -  1)} 

where tr  ^ H ^ l ( v ( k  — l ) )P(k\k  — 1) j  can be simplified as

tr{ffW(«(fc-l ) )P(fc| fc- l )}

[vT(k -  l )A ( f i )AT(f i )P(k\k -  l ) A ( f i ) AT(fi)v(k)

|AT( f l)v(k  -  1)||2tr  {A T(/,)P(fc|fc -  l)A (/j)}  ) .  (5.35)
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Also, the innovation covariance matrix is computed through the following equation 

instead of (5.25)

S ( k )  =  -  l ) ) P ( k \ k  -  1 ) H l ( v ( k  -  1 ) ) + Q m
N  N

+ E E e ”>+i e »+ it r {H »” )({’(*: -  1) )p (* l*  -  ~  l ) ) P ( k \ k  -  1)}
m = 0 n = 0

(5.36)

where t x { H ^ \ v ( k  — l ) )P(k \k  — 1 ) H ^ ( v ( k  — l ) )P(k\k  — 1)} can be written as

tr [ H t \ v { k  -  l ) )P(k\k  -  1 ) H ^ ( v ( k  -  l ) )P(k \k  -  1)}

e(fm)e(fn) ( vT(k -  l ) A ( f m) AT(fm)P(k\k  -  l ) A ( f n)AT(fn)v(k -  l ) ) 2

||A ( f m ) v ( k  — 1)||3||A ( f n ) v ( k  — 1)||

+  e(/m )e(/n)||A  ( /m)P (fc |fc - l)A ( /n)||F 

||Ar ( /m)v(fc -  l) ||||A T( /n)u(A; -  1)|| 

e( fm)e(fn)\\AT( fm)P(k\k  -  l ) A ( f n) AT(fn)v(k -  1)||
-  T , „ .  „ „  ~ T

||A ( f m ) v ( k  — 1) IIII A. ( fn)v(k — 1)||3 

(.f m)eU„)\\AT( fn)P(k \k  -  l ) A ( f m)AT( fm)v(k -  1)11

\\AT( fm)v(k -  l ) | |3||Ar ( /n)n(A; -  1)||

Due to the sparsity of the matrices |A ( / j )  j  , the computational complexity of 

one iteration of the second-order EKF algorithm is of O ( M 2L 2CN 2). This complexity 

is higher than that of the EKF algorithm but still lower than that of the SOCP-based 

implementation in (5.12).

5.4 Sim ulations

We consider a broadband linear microphone array with M  =  10 and L — 9. The sen­

sors are assumed to be equi-spaced with spacing c / f s where f s =  8000 Hz. The actual 

sensor locations are selected such that they correspond to the maximum deformation
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Figure 5.1: Average output SINR versus p and { a (EKF algorithm).

in the array geometry along the array line. The sensor displacements are 7.5% rela­

tive to the presumed array inter-element spacing. The steering delays are quantized 

to 256 levels. The array is presteered to the direction do =  —30°, whereas the de­

sired signal arrives from the direction 6S = —34° with SNR= 10 dB. An interference 

signal arrives from ()\ =  0° with INR= 30 dB. The desired and jamming signals are 

generated as the sum of sinusoidal harmonics with random phases and equal powers 

occupying the band between 800 and 4000 Hz. A uniformly-spaced frequency grid 

with N  = 5 points is selected to discretize the robustness constraint together with a 

value of 5 equal to 10“4. The values of are all chosen to be equal.

5.4 .1  S en sit iv ity  to  th e  choice o f  filter p aram eters

We start by investigating the effect of the choice of the parameters p = <j2m 0/ (cr2 + a 2) 

and on the performance of our EKF-based beamformers. The simulation
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Figure 5.2: Average output SINR versus p and (second-order EKF algo­

rithm) .

results have been averaged over 100 Monte Carlo runs. Figures 5.1 and 5.2 show 

the average output SINR after 2000 iterations versus different choices of the two 

parameters for the EKF-based and second-order EKF-based algorithms of the robust 

beamformer, respectively. The average SINR of the SOCP-based algorithm is equal to 

11.02 dB. We can notice from Figure 5.1 that for a wide range of the two parameters 

there is no noticeable degradation in the output SINR of the EKF-based beamformer. 

Thus, our beamformer does not require exact knowledge of the desired signal or noise 

powers to estimate a exact pre-specified value of cC, 0. However, we can notice that 

extremely small values of { c r ^ } ^  cause degradation in the output SINR as well as 

numerical problems which is shown in the missing parts of the curve for some small 

values of (a2m where the filter did not converge. On the other hand, we can clearly 

see Trom Figure 5.2 that with the use of the second-order EKF, the sensitivity of the 

beamformer towards the selection of its parameters is greatly decreased. This can be
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Figure 5.3: Average output SINR versus the iteration number.

explained by the better approximation of the robustness constraint by including the 

second-order terms in the Taylor expansion of the measurement equation.

5 .4 .2  P erform an ce com p arison  w ith  o ther beam form ers

In this example, we compare the performance of various implementations of our beam- 

former versus the RLS-based adaptive implementations of the classical LCMV beam- 

former and its robust versions using directional derivative constraints, NS1-PS deriva­

tive constraints, and variable diagonal loading. The parameters of the EKF-based 

beamformers are chosen as p = 1 and { ( t F } ^  =  10-4. Figure 5.3 shows the output 

SINRs averaged over 100 Monte Carlo runs for different beamformers versus the iter­

ation number for the same scenario as that considered in the previous example. This 

figure also shows the output SINR of the LCMV beamformer with perfect knowledge 

of the array manifold and infinite sample size. We can clearly notice that the EKF-
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Figure 5.4: Robustness constraint MSE versus the iteration number (EKF algorithm).

and SOCP-based implementations of our beamformer have very close performance. 

Our beamformers clearly outperform the existing wideband robust beamforming al­

gorithms. Figures 5.4 and 5.5 show the MSE in satisfying each of the N  discretized 

robustness constraints for the EKF-based and second-order EKF-based algorithms, 

respectively. We can see from these figures that the chosen values for { e rW } ^  can 

satisfy the robustness constraint with a high accuracy in spite of the approximations 

used in the EKF.

Figures 5.6-5.8 show the array response towards the desired and interference sig­

nals after 2000 iterations for the SOCP-based, EKF-based, and second-order EKF- 

based algorithms of our robust beamformer, respectively. We can notice that all the 

beamformers can maintain a distortionless response towards the desired signal in spite 

of the mismatches in the array manifold while suppressing the interference signal. We 

can also notice the close resemblance of the array response of the beamformers as they
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Figure 5.5: Robustness constraint MSE versus the iteration number (second-order 

EKF algorithm).

all solve the same problem. Figure 5.9 compares the power response of different ro­

bust beamformers for different arrival angles. We can clearly see the performance 

improvements achieved by our beamformers as they yield a high gain in the direction 

of the desired signal while rejecting the interference signal and maintaining a low 

sidelobe level.

5 .4 .3  R o b u stn ess  aga in st rap id  en vironm en ta l changes

Finally, we consider a nonstationary scenario in which the interference signal changes 

its DOA after 1500 snapshots from 6\ =  0° to Q\ =  10° while keeping the same INR of 

30 dB. The desired signal and array manifold mismatches are identical to the previous 

scenario. A nonstationary model with <j% equal to 10-7 is selected for the EKF-based

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ph.D. Thesis - Amr ElKeyi McMaster - Electrical &; Computer Engineering

..................... ■..... • 1 1

—  Look direction
—  D esired signal direction
—  Interference direction\

\ / \  ^ /

s" \
.....................v / ^  ^  '

\ l
.......................\J

i
1000 1500 2000 2500 3000 3500 4000

Frequency

*  Look direction 
O Desired signal direction

£ -1

- 2

-3
1500 2500 3000 3500 40001000 2000

Frequency

Figure 5.6: Frequency response of the robust beamformer (SOCP algorithm).
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Figure 5.7: Frequency response of the robust beamformer (EKF algorithm).
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Figure 5.10: Average output SINR versus the iteration number.

algorithm of the robust beamformer. The remaining parameters of the filter are 

selected as p = 1 and {u^l i}N1 =  1CT4. For the SOCP-based algorithm, a sliding 

window of maximum length 360 snapshots is used to compute the sample covariance 

matrix, and the whole optimization procedure is repeated every time a new snapshot 

arrives. We compare the performance of our proposed beamformers against that of the 

RLS-based implementation of the LCMV beamformer with NS first-order directional 

derivative constraints, NS1-PS derivative constraints, and variable diagonal loading 

[108]. The RLS forgetting factor is selected as 0.995. Simulation results are averaged 

over 100 Monte Carlo runs.

Figure 5.10 shows the average output SINR versus the iteration number for various 

beamformers. We can clearly see that our robust beamformers can maintain a high 

output SINR in spite of environmental changes and the mismatches in the array 

manifold, whereas the other beamformers suffer from decreased output SINR due to
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insufficient robustness against array manifold mismatches. Although the SOCP-based 

implementation of our beamformer yields a higher SINR compared to the EKF-based 

implementation, yet, the computational complexity of our EKF-based beamformer is 

much lower and, thus, is more suitable for online implementation.

5.5 C onclusion

In this chapter, we have presented online algorithms for the wideband beamformer 

with robustness against multiple errors in the array manifold. Our algorithms are 

based on state-space modelling of the beamforming problem. A first- or second-order 

EKF can be used to estimate the weight vector of the beamformer with low computa­

tional cost per iteration compared to the previous LMI and SOCP-based algorithms 

presented in Chapter 4. This makes it favourable for nonstationary environments 

which are often encountered in radar, sonar, and mobile communications. Simula­

tion results have illustrated an improved performance of our beamformer both in 

stationary and nonstationary environments.
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Chapter 6

Robust M ultiuser D etection

6.1 In troduction

Multiuser detection is a well-established field that has found numerous applications in 

wireless communications. It is capable of suppressing the interference due to multiple 

users in a communication system, and is known to be near-far resistant as opposed 

to conventional matched filtering schemes [114]. This eliminates the need for strict 

power control algorithms used in early CDMA systems such as IS-95, thus improving 

the bandwidth-efficiency and decreasing the complexity of the mobile transceiver [85].

The optimal multiuser detector (in terms of the BER) has a complexity that grows 

exponentially in the number of users, which limits its practical applicability [114]. On 

the other hand, the linear MMSE detector has much reduced complexity, in addition 

to the advantage of its convenient online implementation [76]. Typical adaptive im­

plementations of the MMSE detector require that each user sends a training sequence 

that is already known by the receiver. Tracking minor changes in the operating envi­

ronment can be done after that through decision-directed mode (DDM) adaptation, 

in which the detector output symbols are used instead of the training sequence as 

an estimate of the desired user data symbols. As a rule of thumb, DDM can work
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properly most of the time if the error probability in the symbol estimate is less than 

10% [54]. However, when there is a drastic change in the operating environment such 

as an addition of a powerful user or a sudden deep fade, DDM detection becomes 

unreliable and the training sequence has to be retransmitted to the receiver. This 

may cause a significant decrease in the data throughput rate of the system.

On the other hand, blind mode (BM) multiuser detection does not require any 

training. It has been proposed by Honig et al. who developed the minimum output 

energy (MOE) algorithm [57]. This algorithm is similar to the MVDR beamforming 

algorithm discussed in Chapter 2. It minimizes the output energy of the receiver 

subject to a linear constraint that prevents the cancellation of the desired user signal. 

It requires only knowledge of the desired user signature and timing, which are the 

requirements needed by the conventional matched filter detector as well [57]. Mini­

mizing the output energy of the detector was shown to be equivalent to minimizing 

the MSE [57]. However, a major drawback of the MOE algorithm is its sensitivity 

to mismatches in the desired user signature. This problem was treated in an ad-hoc 

manner in [57] by constraining the surplus energy of the detector to achieve robustness 

against these mismatches.

A more mathematically rigourous way of achieving robustness against signature 

mismatches was reported in [24], where a constraint was proposed that maintains a 

distortionless response towards all the vectors differing from the presumed desired 

user signature vector by a norm-bounded error vector. The resulting optimization 

problem was shown to be convex. It was formulated in [24] as an SOCP problem that 

can be solved in polynomial time using interior point methods [83]. Further extensions 

of this approach to provide additional robustness against short data length can be 

found in [45] and [123]. However, a major disadvantage of the algorithms in [24], [45], 

and [123] is that they can not be implemented online, and therefore, are unsuitable 

for nonstationary environments.
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Another disadvantage of robust blind detection schemes is their degraded output 

SINR in high SNR scenarios compared to training-based MMSE detection. This 

problem is similar to the one reported in [88] where BM detection using the RLS 

algorithm suffers from low steady-state SINR compared to decision-directed RLS- 

based (DDRLS) detection. In [104], the detection-aided RLS algorithm was proposed 

to solve this problem. This algorithm starts with BM adaptation until reaching a good 

starting point for DDM detection to continue the adaptation process, thus achieving a 

high steady-state SINR without the need for training. The detector is switched back 

to BM adaptation upon detection of environmental changes. The disadvantage of the 

detection-aided RLS algorithm is that it sets the switching thresholds in an ad-hoc 

manner based on empirical observations. Moreover, perfect knowledge of the desired 

user signature is assumed in [104], and therefore, the issue of robustness against 

desired user signature mismatches may arise.

The use of the Kalman filter as a blind multiuser detector has been originally 

proposed in [125]. However, perfect knowledge of the desired user signature was also 

assumed in the later work and the issue of robustness against desired user signature 

mismatches was not considered. In this chapter, we propose a novel implementation 

of the robust blind detector of [24]. Our implementation is based on state-space 

modelling of the robust blind detection problem where a second-order EKF is used 

to estimate the detector weight vector iteratively. Our robust blind Kalman filter 

(RBKF) detector has the same computational complexity per iteration as the RLS 

implementation of the MOE algorithm [88], which is much lower than the complexity 

of the algorithms reported in [24], [45], and [123].

We also present a state-space model for the DDM detection problem, and propose 

an algorithm for switching between robust blind and decision-directed detection. Our 

switching algorithm uses the NIS of the blind detector to test for convergence and 

accordingly switches to DDM detection. The NIS of the decision-directed detector is
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used to detect its failure and then switching back to BM detection occurs. The pro­

posed algorithm is therefore capable of detecting and tracking environmental changes 

(e.g., the addition of new users to the system), and yields an output SINR that is 

very close to the optimum output SINR of the MMSE detector without any need for 

training even in the presence of mismatches in the desired user signature.

6.2 Background

Let us consider a AT-user synchronous CDMA system.1 The received signal can be 

written as [114]
K

y(t) = ŷ 2 ,A ibisi{t) + n(t), t e [ 0 , T ]  (6.1)
i = 1

where A i  and b,t are the amplitude and transmitted bit of the Ah user, respectively, 

S i ( t ) is the unit energy signature waveform of the Ah user over the bit interval T, and 

n(t) is white Gaussian noise with variance cC. The data bits are assumed to

be independent and to take the values ±1 with equal probabilities.

The signals ( s ^ t ) } ^  can be represented as finite-dimensional vectors using the 

orthonormal basis functions {'0m(^)}^=i defined on [0, T], For example, for a direct- 

sequence CDMA system, ^ m(t) = g(t — (m — 1)TC) where g(t) is the chip waveform 

and Tc is the chip interval. Therefore, we can write

Ms
Sk(t) ^  ' Smjfc'0m(t). (6.2)

ra=1

Accordingly, we can express the £;th Ms-dirnensional received vector as

K

y{k ) =  ^ 2  Aibi(k)si +  n(k)  (6.3)
i= 1

1 All the algorithms presented below can be readily extended to the more practical case of asyn­
chronous CDMA by increasing the length of the observation window beyond one bit interval [57].
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where s, =  [sp*, S2,i, ■ ■ •, SMs,i\T and n(k)  is the Ms-dimensional white noise vector 

with independent components each of variance a 2.

W ithout any loss of generality, we assume tha t the first user is the desired user 

whose signature vector is s x. A linear receiver for this user is given by the vector c 

and the detector output is given by b\ (k) = sign{cTy(A;)}. If the transm itted symbols 

of the desired user are known either through training or estimation, then the MMSE 

receiver is given by [81]

c =  argmin E {(Ai&i(fc) — y T(fc)c)2} (6-4)

Adaptive techniques for the solution of (6.4) which are based on the RLS algorithm 

were proposed in [88]. For the Arth received signal vector, the DDRLS receiver weight 

vector is given by
k

c(k) =  a rg m in j^  A ^ (A i6 i( i)  -  y T(i)c)2. (6.5)
C  '  ^

i=1

On the other hand, the blind MOE receiver does not require any knowledge of the 

desired user symbols. It can be formulated as the following optimization problem [57]

min E U c Ty ) 2\  — cTR yc  s.t. cTs x — 1 (6.6)
C

where S| is the presumed desired signal signature vector and R y = E { y (k ) y T(k)} is

the covariance matrix of the received vector. The solution to this problem is

(6-7)
81 B y  S 1

and yields the same SINR and BER as the MMSE detector for Si =  [57].

An equivalent formulation for the MOE detector known as the partitioned linear 

interference canceller was presented in [97]. This formulation is similar to the GSC 

formulation of the LCMV algorithm. It decomposes the receiver weight vector c as

c = sx -  C ^ca (6.8)
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where ca is the adaptive part of c, and the columns of the full rank M s x (Ms — 1)- 

dimensional matrix C \  form an orthonormal basis for the nullspace of s i . The use 

of the above weight vector decomposition eliminates the need for the constraint in 

(6.6), and the MOE receiver can be written as

ca = argmin E { ( y T(k)s1 -  y T(k)C±ca)2} . (6.9)
Co

Adaptive techniques to solve (6.9) were also proposed in [88]. For example, the 

RLS-based MOE algorithm chooses the weight vector c(k)  adaptively such that

ca(k) = argmin V 'A r ls  (yT(i)s1 ~  y T( i )C^ca) 2 (6.10)
Ca

i=1

c(k) = si  -  C ^ c a(k). (6.11)

In practical situations, mismatches may exist between the presumed and actual 

desired user signature vectors, i.e., Si ^  S j. These mismatches arise due to the 

effect of propagation through the channel (e.g., multipath fading) and/or timing 

asynchronism. The performance of the MOE detector is known to degrade severely 

for even slight mismatches of such type. Several approaches have been considered to 

overcome this problem; see [24], [45], [57], and [117]. For example, in [57] Honig et 

al. proposed to constrain the norm of the weight vector to prevent the cancellation 

of the desired user signal. The corresponding modified problem can be formulated as

min ct R vC
C

S.t.  CTSi  =  1

c 12 < l + 7 e  (6.12)

where qc is the maximum allowable value of the so-called surplus energy of the de­

tector. The solution to this problem can be found using the method of Lagrange 

multipliers and is given by [9]

(Ry + v J y 'h  
C d l  ~  '■T { n  r s (6.13)sl (R y +  Vcl) XSl 
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where the parameter r)c is chosen so that the second constraint in (6.12) is satisfied. 

It is clear from (6.13) that constraining the surplus energy of the detector results 

in diagonal loading of the received vector covariance matrix. However the amount 

of diagonal loading is often set in an ad-hoc manner, independent of the amount of 

mismatches in the desired user signature.

In many scenarios, we can model the actual received signature vector of the desired 

user as

Si =  Si +  e (6-14)

where e is the signature error vector whose norm ||e|| is a measure of the magnitude 

of the signature distortion. For example, in an unknown frequency selective fading 

environment, the actual received signature vector is given by Si =  Si * h c where h c 

is the M s-dimensional channel response vector, Si is the transm itted signature vector 

of the desired user, and * denotes the convolution operator [24]. The norm of the 

signature error vector can therefore be bounded by

||e|| =  ||si -  s i|| =  ||si * (hc -  hi) ||

< y/KW-SiWWK-hiW  (6.15)

where Si is equal to si augmented by M s — 1 zeros and hi is the ideal channel response 

(Kronecker delta). Another example, in the case of timing asynchronism, we can use 

Taylor approximation to bound s i(t +  r<i) — -Si(/;), where t,i is the timing offset. Hence, 

the signature error vector is bounded by ||e|| < B,iMsrri [24], where Bd is the upper 

bound for the derivative of the signature waveform S i ( f ) .

One of the recent mathematically rigourous robust approaches to blind multiuser 

detection is based on providing a distortionless response for all the vectors that differ 

from the presumed desired user signature vector by a norm-bounded vector e [24]. 

The problem can be formulated as

mi ncTR yc s.t. cTsi > 1 V§i G c>i(£) (6.16)
C
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where <Si(e) =  {si |5i = si  + e, ||e|| <  e}.

This problem is equivalent to the following SOCP optimization problem [24]

m incTR yc  s.t. c TSi — e||c || > 1 (6-17)
C

which can be solved efficiently using well-established interior point methods with a 

complexity of O (Mf) [83]. The disadvantage of this formulation is that it does not 

yield any closed form solution, and thus can not be readily implemented online.

6.3 T he R obust B lind  K alm an F ilter D etector

In this section, we derive our new RBKF detector that alleviates most of the short­

comings of the previous approaches. First, we note that at the optimal point of 

(6.17), the robustness constraint has to be satisfied with equality. This can be easily 

seen by noticing tha t if the constraint was not active at the optimal point, i.e., if 

cTSi — c||c|| =  (3 > 1, then we could further decrease the cost function simply by

dividing the receiver weight vector estimate by j3, while still satisfying the constraint.

Thus, without any loss of generality we can replace the inequality in the robustness 

constraint with equality. Therefore, the robust blind detection problem in (6.17) can 

be written as

min E U y T(k)cB(k))2} s.t. h(c^{k)) =  1 (6.18)
C B  ( k )

where h{c^{k)) =  c^(k)si  — £ | | c b (A;)||, and the subscript ( - ) b  stands for “blind” .

We will use a state-space modelling approach to solve the optimization problem 

in (6.18) similar to that we have used in Chapters 3 and 5. The process equation of 

the model is given by

cB(k) = cB(k -  1) +  w B(k) (6.19)
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where cB(k) is the state vector that represents the optimal robust blind detector 

weight vector, and w B(k) is the process noise vector that enables tracking the opti­

mal solution of (6.18) in nonstationary environments. The process noise models the 

changes in the operating environment that can be attributed to a large number of 

random variables, e.g., the channel coefficients, the distortion in the signature, the 

number of users, etc. Hence, w B(k) is assumed to be Gaussian (by the Central Limit 

Theorem) with zero mean and covariance matrix Q B = cr|J. The parameter <r| is 

selected such that it matches the degree of nonstationarity of the operating environ­

ment. For example a value of <t| equal to 10-6 indicates that each component of the 

optimal weight vector is expected to change independently by an order of 10~3 every 

time step.

The corresponding measurement equation can be written as

1

o
 

1 .......
1

r—
1

1

+
riB,o(k) 

nB,i(k)
(6 .20)

y T(k)cB(k) 

h(cB(k))

where nB$(k) and n Bti(k) are modelled as zero mean white sequences, independent 

of each other and of the process noise. In matrix notation, the latter equation can be 

expressed as

z B = h(cB(k)) +  n B(k) (6.21)

where z B = [0,1 }T, h (cB(k)) = [yT{k)cB(k), h(cB(k))]T, and n B(k) = [nBfi(k) ,nBA(k)Y 

The covariance matrix of the measurement noise is given by

R  = E { n B(k)nB(k)} =
aB ,0

0

0

B ,1

(6 .22)

Applying a state estimator to the above model will yield an estimate for the op­

timal weight vector cB(k) that minimizes the uncertainties due to the process and 

measurement noises. Note that minimizing the mean square value of n Bjo(k) is equiv­

alent to minimizing the output power of the detector, while minimizing the mean 

square value of n B}i(k) will minimize the MSE in satisfying the robustness constraint.
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The mean square residual power cr| 0 should be chosen of the same order as that of 

the optimal output power of the receiver, which is given roughly by ( A f + ct2 ) | | c b ( A ; ) | | 2 . 

It should be stressed that our RBKF detector does not require perfect knowledge of 

any of these parameters, and the subsequent simulation results show that it performs 

well for a wide range of the parameter crB0(k). At the same time, to satisfy the 

robustness constraint with good accuracy, the value of aB t should be as small as 

possible (for example, o\  =  10-12, but a few orders of magnitude higher than the 

machine “epsilon” to avoid numerical problems.

Due to nonlinearity of the measurement equation, we will use the second-order 

EKF to find a recursion for the estimated vector cB(k) [6]. We start by evaluating the 

Jacobian H  c{k,cB{k)) of h(cB(k)) and the Hessian matrices and H ^ ( c B(k)) 

of its components, which are given by

The recursion for the estimated weight vector starts with an initial weight vector 

estimate c b (0 )  together with its associated covariance matrix P b ( 0 | 0 ) ,  and updates 

the weight vector estimate as

where the filter gain and the predicted measurement are given, respectively, by

H c(k ,cB(k)) =  (V hT(cB(k)))T =  y T(k), s?  -  s .
L I I c b W I I .

H <2 =  V V T { c l ( k ) y ( k ) j  = 0 ( 6 .2 4 )

V V T {h(cB(k))}

cB(k) = cB(k -  1) +  G B(k) ( zB -  z B(k\k -  1)) ( 6 .2 6 )

G B(k) = P B(k\k -  1 ) H l ( k ,  cB(k -  1 ) ) S ^ ( k ) ( 6 .2 7 )

z B{k\k -  1)
Cb(k ~  1 )y{k) 

h(cB(k -  1)) +  ±tr { H £ ( c B(k -  l ) ) P B{k\k -  1)}
( 6 .2 8 )
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In the latter equation, tr  | i / ^ ( c B(fc — l ) ) P B(k\k ~~ 1) j  can be simplified as

tr  {h £>(£b(* -  i ) ) e B(t|» - 1)}

(cB(k -  l ) P B(k\k -  l)c B(fc -  1) -  | | c b (A : -  1)||2tr{JPB(A:|fc -  1)})
|cBCfc-l)H3

(6.29)

The covariance matrix of the predicted weight vector P B(k\k — 1), and the covariance 

matrix of the updated weight vector P B(k\k) are given by

P B(k\k -  1) =  P B(k -  1|k -  1) +  Q b

P B(k\k) = P B( k \ k - l ) - G B(k)SB(k)Gl(k)

The innovation covariance matrix S B(k) is given by

S B(k) = H c( k , c ( k - l ) ) P B( k \ k - l ) H l ( k , c ( k - l ) )  + R

(6.30)

(6.31)

+
0 0 

0 1
tr {ffW(cn(*  -  i))Pu(*l* -  -  i ) ) P bW * - 1)}

(6.32)

Also, tr{iT£)(cB(fc -  l ) )PB(k\k -  1 )H<£ (cB(k — l ) ) P B(k\k — 1)| can be written as

tr  { H ^ ( c B(k -  l ) ) P B(k\k -  1 ) H ^ ( c B(k -  l ) ) P B(k\k -  1)}

cB(k -  1 ) P B(k\k -  1 )cB(k -  l ) )2 +  | | c b (A : -  l) | |4tr{P|(£;|£; -  1)}
\cB(k — 1)||6

2||cB(fc — l) | |2| |P B(fc|A; — l ) cB{k — 1)||2 ). (6.33)

The consistency of the filter can be checked through testing its NIS, which is 

defined as [6]

eB(fc) =  ( zB -  z B(k\k -  1 ))TS B1(k)(zB -  z B(k\k -  1)), (6.34)
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and is chi-square distributed with two degrees of freedom [6]. The NIS should lie 

within a certain region of acceptance if the filter is consistent. For example, the 

acceptance region can be selected as the double-sided interval containing 90% of the 

probability of the distribution. An exponential or moving average window can also 

be used for the calculation of the NIS to decrease the variability, and therefore, to 

increase the power of the test.

For initialization of the iterative algorithm in (6.26)-(6.32), a random Gaussian 

weight vector estimate c b ( 0 ) ,  together with an initial covariance matrix estimate 

Pb(1|0) = P o l  are used, where po is a constant that reflects high uncertainty in our 

initial random weight vector estimate. One way of choosing Po is so that cb(1) lies in 

the center of the double-sided 90% acceptance region for the chi-square distribution 

with two degrees of freedom. That is, ignoring the second-order term and the mea­

surement noise covariance matrix in (6.32), and substituting with the approximated 

Sb(1) in (6.34), we obtain

Po =  -  * B ( l |0 ) f  ( H c( 1, c ( 0) ) Hl ( l ,  c(O)))-1 (zB -  £b(1|0)). (6.35)

We stress here that the computational complexity of all the update equations of 

the RBKF detector is of O (M 2) operations per iteration, which is the same order 

of computational complexity as the RLS implementation of the non-robust blind 

MOE detector in [88]. This computational complexity is much lower than the 0 ( M %) 

complexity of the interior point methods-based implementation of the robust blind 

detector that can find the exact optimal solution of (6.18). Moreover, the RBKF 

detector has the advantage of being an iterative algorithm, which is more suited to 

nonstationary environments than the algorithms in [24] and [123].
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6.4 S tate-Space M odel for D ecision-D irected  

D etectio n

Following the same guidelines of the previous section, we can easily derive a state- 

space model for the optimal weight vector cj)(k) of the DDM detector that solves the

optimization problem in (6.4). The process and measurement equations for the DDM

receiver are given by

cD(k) = cD(fc -  1) +  w D(k) (6.36)

A-J)i(k) =  y T (k)cD(k) + nD(k) (6.37)

where the subscript ( ' ) d  stands for “decision-directed” , wjj(k)  represents the process 

noise that is assumed to be Gaussian with zero mean and covariance matrix Q d =  

<7p/, and n-£>(k) represents the measurement noise that is assumed to be white with 

zero mean and variance of, 0.

For a stationary environment, the value of crĵ o can be roughly determined by 

performing a steady-state analysis of (6.37), and assuming that at convergence to the 

optimal point the interferers have been completely nulled out and, hence, the detector 

always makes correct decisions, i.e., b\(k) = b\{k). Then,

ctdo =  lim E \ (Aibi (k)  -  y T(k)cD(k))2\
’ i—*oo I  J

=  .lim E |  ( ^ ( ^ ( l  -  sfcD(fc)) -  crnn T(A;)cD(A:)j

=  lim Aj(  1 -  s^cd (A:))2 +  o-2||cD(A;))||2I—>00
=  A \( l  -  s f c D)2 +  c t 2 | | c d | | 2  (6.38)

where c d  is the optimal weight vector for the stationary environment. In practical 

situations, the optimal weight vector is unknown. However, subsequent simulation 

results show that the performance of the decision-directed Kalman filter (DDKF)
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detector is not very sensitive to the choice of the value of <7p0, i.e., there is no 

significant degradation in the output SINR for a large range of selection of Op 0.

The recursive algorithm for estimating the weight vector cp(A;) of the DDKF

detector is given by

P-£>(k\k — 1) =  P D(k -  l \k -  I) + Q d (6.39)

SD(k) = (Td0 +  y T(k)Pv{k\k  -  l )y(k)  (6.40)

G D(k) =  P D( k \ k - l ) y ( k ) S ^ ( k ) (6.41)

cD(k) =  cn(k  -  1) +  G D(k) (^Aib^k) -  y T(k)cI)(k -  1)) (6.42)

P D(fc|fc) =  P D( k \ k - l ) - G D(k)SD(k)Gl(k) .  (6.43)

In the above, bx(k) is the estimate of the desired user symbol, which may be 

obtained using a training sequence. Alternatively, we can use some weight vector 

c(k) to estimate bi(k) as bi{k) =  sign {y T(k)c(k)}. In the standard decision-directed 

algorithm, the weight vector c(k) is given by the previous weight vector estimate of 

the algorithm, that is, c(k) =  cp(fc — 1).

The NIS of the DDKF detector is defined as

£o(k) = (Aibi(k)  -  y T(k)cD(k)^j . (6.44)

It is chi-square distributed with one degree of freedom and should lie within acceptable 

limits if the detector is consistent [6]. Also, a sliding or exponential window can be 

used for the computation of the NIS.

Initialization of the DDKF detector can be done in a similar way to the RBKF 

detector, that is, the initial detector weight vector can be chosen as a random Gaussian 

vector and its associated covariance can be selected as P p ( l|0 )  =  /3qI ,  where

^ = eD(l)l|i/(l)||2 (Alh(1) ~ yT(1)£D(Q)) • (6'45)
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Figure 6.1: Combined blind and decision-directed detection algorithm.

6.5 C om bined B lind  and D ecision-D irected  

D etectio n

As mentioned before, decision-directed detection can achieve a high steady-state 

SINR. However, it requires a good initial point for successful adaptation and can suffer 

from catastrophic failure in the case of abrupt changes in the environment [81], [104]. 

On the other hand, robust blind detection does not require any training and can com­

bat mismatches in the desired user signature, but suffers from a decreased steady-state 

output SINR.

In this section, we present an algorithm for switching between the two proposed 

Kalman filter-based detection techniques. Our algorithm uses BM detection to pro­

vide a good starting point for DDM detection. Switching to DDM occurs when the 

convergence of the blind detector is detected through a chi-square test on its NIS. 

After switching to DDM, the NIS of the decision-directed detector is tested to detect 

possible failure of DDM due to nonstationarities, and subsequently switch back to 

BM detection. Figure 6.1 shows a block diagram of our algorithm.
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6 .5 .1  B lin d  m o d e

The BM detector contains two filters: a robust blind filter denoted by Be and given by 

(6.23)-(6.31), and a decision-directed filter denoted by Db and given by (6.39)-(6.43). 

The symbol estimates for the filter Db are provided using the weight vector estimate

is given by the weight vector estimate of the Bb filter, i.e., c(k) =  Cb b (£;), where the 

subscript (-)xY refers to the filter X (RBKF or DDKF) operating in the Y mode.

An exponentially-windowed NIS can be used to detect convergence of the blind 

filter. It is calculated through

cBb(A:) =  a  eSB(fc -  1) +  (*bb -  z Bs(k\k -  1 ))TS B*(k) (*bb -  *bb{k\i -  1)) (6.46)

where a  is a constant close to but less than unity, resulting in an effective window 

length of Under the above mentioned Gaussian assumption, esB(k) can be

approximated using first-order moment matching as chi-square distributed with |~ y ^ ]  

degrees of freedom [6].

After the ith  iteration, cbb(£:) is compared against a threshold T ^ k )  and if 

6rb (k) < T[>(k), convergence is declared and detection is switched to DDM adap­

tation. If the detector has been operating in BM for m  iterations, the threshold 

Tb(Aj) can be taken as the expected value of the chi-square distribution with the 

corresponding degrees of freedom, and can be approximated by

of the blind detector, i.e., b\ (k) =  sign {r/T(fc)cBB(A:)}. The BM receiver weight vector

(6.47)

where fix 2 is the mean value of the chi-square distributed random variable with two 

degrees of freedom.
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6 .5 .2  D ec is io n -d irected  m od e

The DDM detector contains a single decision-directed filter Dp given by (6.39)-(6.43), 

which uses its previous weight estimate to obtain the estimate for the current symbol, 

i.e., bi(k) = sign { y T(k)cDD(k -  1 )}.

Upon switching to DDM, the filter Dd is initialized using the estimates of the BM 

decision-directed filter. Therefore, if switching to DDM has occurred after the ith  

iteration, we set

If the operating environment changes and the filter fails to adapt to the new

Therefore, a chi-square test can be used to detect nonstationarities to decide whether 

or not to switch back to BM detection. Similar to the BM detector, the exponentially- 

windowed NIS can be evaluated recursively as

If £dd (&) exceeds a certain pre-specified threshold To(k) then detection is switched 

to BM. This threshold can be selected as the 7 ,,. upper-tail probability point of the chi- 

square distribution with [-yy-] degrees of freedom. If the detector has been operating 

in DDM for m  iterations, T^(k)  can be approximated by

where P { x 1 >  Xi(7 «)} =  1 ~  lu,  and x j  is a chi-square distributed random variable 

with one degree of freedom.

CDD(i) =  cDb(*)

P D d ( * N )  =  P d b W ) -

(6.48)

(6.49)

environment, the difference between the measurement Aibi(k)  and its predicted value 

y T(k)cj)ri(k — 1) will increase, leading to a high value of the NIS of the filter Dd [6 ].

eDo(k ) =  a  eDn {k -  1) +  {k) -  y T(k)cdd (k -  1)) . (6.50)

(6.51)
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Figure 6.2: Average output SINR versus crĵ o-

Upon switching back to BM detection, the weight vector estimate of the filter Dd

is used to initialize the two BM filters Bb and Db , and the corresponding covariance

matrices are re-initialized again. That is, if switching to the BM occurred after the 

ith  iteration, we have

cbb(a> =  cdb(«) =  cDo(i) (6.52)

P b b W ) =  = Po I  (6.53)

where fio is chosen according to (6.35).
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Figure 6.3: Average output SINR versus p =  u |  0/(A f +  ofj.

6.6 Sim ulations

6.6 .1  S en sitiv ity  to  filter p aram eters

We start our numerical examples by examining the sensitivity of our Kalman filter- 

based detectors to the choice of their model parameters. We consider a synchronous 

CDMA system with randomly generated Gaussian signature vectors of length M s =  31 

[57], [104]. The signature vectors are affected by additive random Gaussian distor­

tions with magnitude 0.4 relative to the magnitude of the original signature vectors. 

The norm of the distortion is assumed to be known at the receiver, i.e., e =  0.4. The 

system has 9 interfering users with different ISR: 5 users with ISR =  10 dB, 2 users 

with ISR =  20 dB, and 2 users with ISR =  30 dB. The simulation results are averaged 

over 200 Monte Carlo runs.

First, we consider the performance of the DDKF detector (with training for the
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first 100 symbols) for different values of the parameter ff^o- Figure 6.2 shows the 

average output SINR of the detector after 500 iterations versus cr  ̂0 at two different 

SNRs; 10 dB and 20 dB. From this figure, we can notice that at both SNRs the 

DDKF receiver can achieve nearly the optimal SINR of the MMSE detector over a 

wide range of selection of the parameter cr^0.

Figure 6.3 shows the average output SINR of the RBKF detector after 1000 iter­

ations for different choices of the parameter p =  cr| 0/ (Af +  ofj and at two different 

SNRs; 0 dB and 20 dB. The other parameters of the detector are chosen as cr| =  0 

and <7g x =  10-12. We can notice from Figure 6.3 that the RBKF detector has a 

satisfactory performance over a wide range of c r |0. Note that although our RBKF 

detector may be expected to perform worse than the SOCP detector (due to the ap­

proximations in the use of the EKF), its performance does not degrade significantly 

over a wide range of selection of the parameter cr| 0 and can still provide a good 

starting point for DDM adaptation in our proposed switching algorithm.

6 .6 .2  P erform an ce com p arison  in  sta tio n a ry  en viron m en t

In this numerical example, we compare the proposed detectors with the existing ones 

for a CDMA system similar to that described in the previous example, with the 

desired user SNR equal to 20 dB. The signature vector of the desired user is distorted 

due to the effect of propagation through a frequency selective fading channel. The 

channel is modelled as a 3-tap filter with coefficients [1,£i,£2]t  where £q and s2 are 

Gaussian random variables normalized such that e\ +  e\ — 0.1. The value of S is 

selected equal to 0.4. The stationary signal model is chosen for all algorithms, i.e., 

aB = ab — 0; and Arls =  1, and the values cr| 0 =  2{A\ +  cr2), crf^ =  10-12, and 

° d ,o  =  2 are selected. Training is used for the first 100 symbols of the DDRLS and 

DDKF detectors, followed by decision-directed adaptation. The simulation results 

are averaged over 200 Monte Carlo runs.
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Figure 6.4 shows the average output SINR of the proposed Kalman filter-based 

detectors, the SOCP-based detector, and the blind MOE detector versus the iteration 

number. It also shows the optimum SINR of the MMSE detector computed in the 

case when the exact signature vector of the desired user is known. From this figure, we 

can clearly see that the DDKF detector can achieve the optimum SINR with the help 

of training. We can also see that the robust detectors can combat the distortion in 

the desired user signature without any use of training but at the price of a decreased 

steady-state SINR, whereas the RLS-based MOE detector can be seen to suffer from 

a reduced output SINR due to the signal self-nulling phenomenon.

Figure 6.5 shows the NIS of the RBKF detector for a single run and the average 

NIS over 200 runs versus the iteration number. From this figure, we can see that 

the NIS of the detector converges to its steady-state estimate in approximately 1200 

iterations. Fig. 5 also shows the upper and lower 5% tail probability points for the
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Figure 6.7: Average output SINR versus SNR.

Chi-square distribution with two degrees of freedom. It is clear from this figure that 

our RBKF detector is consistent on convergence to its steady-state estimate as the 

NIS lies within the 90% probability region of the distribution.

Figure 6.6 shows the innovation component corresponding to the robustness con­

straint and the error in satisfying the robustness constraint versus the iteration num­

ber for the same run whose NIS is shown in Figure 6.5. We can see from Figure 6.6 

that the robustness constraint is satisfied by the weight vector estimate of the RBKF 

detector at convergence, in spite of the approximations involved in the use of the 

second-order EKF.

For the same scenario, Figure 6.7 shows the average output SINR versus SNR. 

From this figure, the advantage of decision directed adaptation for scenarios with 

high SNRs can be seen. The similarity in the performance of the RBKF and SOCP 

detectors is also apparent. This similarity translates into a very close BER for a wide
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range of SNR in Figure 6.8. We can also notice the advantage of robust detection 

schemes over classical MOE detection which fails completely at all values of SNR.

6 .6 .3  P erform an ce in  n o n sta tio n a ry  environm ent

In this example, we consider a CDMA system with nine interferers having identical 

ISR of 10 dB, and three stronger users added at the 1500th time instant. These 

three users have randomly generated signature vectors and one of them has ISR =  20 

dB, while the other two have ISR =  30 dB. The desired user has an SNR equal 

to 20 dB. The desired user signature distortion is similar to that considered in the 

previous simulation and the value of S is also selected equal to 0.4. For the DDRLS 

algorithm, initial training is used for the first 100 iterations and the value of Arls for 

all RLS-based detectors is selected as 0.995. For the RBKF detector, a nonstationary 

model is selected for the process equation with =  x l0 ~ 6, whereas for all Kalman
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filter-based detectors used in the proposed switching algorithm the stationary model 

is selected with cr| =  <Tg =  0 (as the algorithm can account for nonstationarities and, 

therefore, there is no need to use a nonstationary model for the process equation). 

The other parameters of the Kalman filters used in this example are selected as 

(jg o =  10{A\ -)- cr2), <7g x =  10-12, and 0 =  2. A sliding window of 400 snapshots is 

used to estimate the sample covariance matrix used in the SOCP-based detector. The 

exponential window parameter for calculating the NIS of the BM and DDM filters is 

selected as a  =  0.98, and the threshold parameter as =  99.9%. For the detection- 

aided RLS algorithm in [104], the lower and upper switching SINRs are given by 0 dB 

and 7 dB, and both the probability of an early switch to DDM and the probability 

of false nonstationarity alarm are given by 5%. The simulation results are averaged 

over 500 Monte Carlo runs.

Figure 6.9 shows the average output SINR versus the iteration number. The
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Figure 6.10: Probability of switching to DDM versus the iteration number.

decreased value of the steady-state SINR of the DDRLS algorithm can be attributed 

to its catastrophic failure in some scenarios. Our switching algorithm does not suffer 

from this phenomenon. It can automatically re-converge after the addition of the new 

users without retraining and yields an output SINR that is very close to the SINR 

of the optimal MMSE detector. From Figure 6.9, it also follows that our detector 

is capable of detecting changes in the environment rapidly and adapting to the new 

environment accordingly. The key to this feature is the re-initialization of the blind 

filter covariance matrix upon switching to BM, which erases all the memory of the 

filter. W ithout this re-initialization step, the blind filter will suffer from decreased 

adaptation rate to sudden environmental changes. The observed complete failure of 

the detection-aided RLS algorithm can be explained by the fact that its MOE detector 

is sensitive to mismatches in the desired user signature.

Figure 6.10 shows the DDM probability versus the iteration number. Note that 

in some runs, DDM detection can adapt to the additional users in the system and
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Figure 6.11: Single-run output SINR versus the iteration number.

therefore there is no need to switch to BM. This is reflected in Figure 6.10 by the 

non-zero probability of DDM after the addition of the three new users to the system. 

Figure 6.11 shows the single-run output SINR for one of these scenarios in which the 

decision-directed algorithms can readapt to the new environment without retraining. 

Figure 6.12 displays the corresponding NIS of both the BM and DDM detectors, from 

which we can see that in this scenario the NIS of the DDM filter does not exceed the 

upper threshold T^{k),  and therefore, no switching to BM occurs. Figures 6.13 and 

6.14 show, respectively, the single-run output SINR and the NIS for a scenario in 

which the DDRLS algorithm fails to readapt to the environmental change. It is clear 

from Figure 6.14 that our switching algorithm can detect the failure of the DDM 

adaptation as the NIS of the DDKF detector exceeds the acceptable threshold, and 

thus switching to BM occurs. We can also see that detection is switched back to 

DDM after convergence of the RBKF detector.
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Figure 6.13: Single-run output SINR versus the iteration number.
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6.7 C onclusion

We have presented a robust blind multiuser detector that provides an improved ro­

bustness against arbitrary mismatches in the desired user signature vector. In contrast 

to the previous SOCP-based implementation of this detector, our technique can be 

implemented online using a second-order EKF, and requires only 0 ( M %) operations 

per iteration. A state-space approach has been presented for the decision directed 

detection problem, and a new switching algorithm between BM and DDM detection 

has been introduced that is capable of detecting and tracking environmental non- 

stationarities. The new algorithm can achieve an output SINR that is very close to 

that of the MMSE detector even in the presence of mismatches in the desired user 

signature and without any need for training. Simulation results have been presented 

that show an improved performance of the proposed algorithms compared to earlier 

techniques.
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Chapter 7

Concluding Remarks and Future 

Directions

In this chapter we highlight the main contributions in this thesis. We also discuss 

possible extensions for future work.

7.1 C onclusions

In this thesis, we have developed several computationally efficient adaptive beam- 

forming and multiuser detection algorithms that are applicable in practical operating 

environments where the signal characteristics are not precisely known.

In Chapter 3, we have presented an iterative algorithm for the narrowband robust 

MVDR beamformer. Our algorithm has a reduced computational complexity com­

pared to previous implementations of the robust MVDR beamformer. Therefore, it 

is well-suited to practical nonstationary environments where the beamformer weight 

vector has to be updated with a low computational cost whenever a new data sam­

ple is received. We have also presented two modifications of our proposed algorithm 

to account for abrupt environmental changes that are often encountered in practical
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systems. Simulation results were presented illustrating an improved performance of 

the proposed algorithms.

The problem of wideband beamforming in the presence of multiple mismatches 

in the array manifold has been addressed in Chapter 4. We have presented a wide­

band time domain-based beamformer that can be considered as an extension of the 

robust MVDR beamformer. Our beamformer avoids previous heuristic constraints 

and provides an amount of robustness directly related to the amount of uncertainties 

in the array manifold. We have presented two algorithms for our wideband beam- 

former that can be implemented efficiently with polynomial complexity using interior 

point methods. Simulation results validated an improved performance of our pro­

posed beamformer compared to the existing algorithms and its improved robustness 

against mismatches in the array manifold.

In Chapter 5, we have developed a computationally efficient online algorithm for 

our robust wideband beamformer presented in Chapter 4. Our approach is based 

on state-space modelling of the robust beamforming problem and has much lower 

computational complexity than the interior point-based implementations presented 

in Chapter 4. A first- or second-order EKF can be used to estimate the beamformer 

weight vector recursively which makes our technique suitable for nonstationary envi­

ronments. Simulation results have illustrated an improved performance of the pro­

posed beamformer both in stationary and nonstationary environments.

In Chapter 6, we have presented a new algorithm for blind multiuser detection 

with an improved robustness against arbitrary mismatches in the desired user signa­

ture. In contrast to the previous SOCP-based implementation of this detector, our 

technique can be implemented online using a second-order EKF with a reduced com­

putational complexity. A state-space modelling approach has been also presented for 

the decision-directed detection problem, and a new switching algorithm between BM 

and DDM detection schemes has been developed. The new algorithm can achieve
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an output SINR that is very close to that of the MMSE detector without any need 

for training even in the presence of mismatches in the desired user signature. Sim­

ulation results were presented illustrating an improved performance of the proposed 

algorithms compared to earlier multiuser detection techniques.

7.2 Future W ork

Several extensions of the work presented in this thesis are of interest. In what follows, 

we will describe some of these future research directions.

7.2.1  R o b u st narrow band beam form in g

It was assumed throughout the thesis that the desired and interference signals are 

mutually independent. However, either partially or completely correlated interference 

may be present in practical scenarios because of multipath propagation. In this 

case, traditional adaptive beamforming algorithms not only fail to place nulls in 

the directions of the interference but also tend to cancel the desired signal at the 

beamformer output [89], [120]. Further modification of the robust MVDR beamformer 

is required to handle correlated interference scenarios.

7.2 .2  R o b u st w id eb an d  b eam form in g

Based on our work in Chapters 4 and 5 on robust wideband beamforming, several 

issues arise that are worth future study.

•  It was shown in [116] that the narrowband robust MVDR beamformer can be 

interpreted in terms of diagonal loading where the optimal value of the diagonal 

loading factor is computed based on the known level of uncertainty in the de­

sired signal steering vector. It would be interesting to explore the relationship
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between our wideband beamformer and the diagonally loaded LCMV algorithm 

and study whether the former can be considered a special case of the latter 

with a coloured diagonal loading, i.e., with an optimum choice of the diagonal 

loading factor for each frequency.

•  It would be useful if the computational complexity of the SOCP- and SDP- 

based implementations of our wideband beamformer could be further reduced. 

Recall that the matrices B ,  C 0, and {C m}^=1 in (4.29) and (4.44) are sparse. 

It is possible tha t specially tailored solvers for these problems can be developed.

•  Simulation results have shown that the convergence rate of our Kalman filter- 

based robust wideband beamformer in Chapter 5 is of the same order as that of 

the LCMV algorithm. An analytical derivation of the convergence rate of the 

beamformer similar to the one we derived for the narrowband robust MVDR 

beamformer in Section 3.3.3 would be an interesting task.

7 .2 .3  M u ltiu ser  d e tec tio n

In Chapter 6, we have presented an algorithm that switches between blind and 

decision-directed multiuser detection. A possible extension of this work is the de­

velopment of multiuser detection algorithms that optimally combine the estimates of 

both detection schemes without hard-decision switching. This can be done using mul­

tiple model estimation techniques based on the state-space models we have developed 

in Sections 6.3 and 6.4.
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7 .2 .4  S em i-B lin d  rob u st a d ap tive  b eam form ing

In this thesis, we have developed several algorithms that utilize some partial knowl­

edge available about the array manifold. Significant improvements can still be ob­

tained by further exploitation of the statistical properties of communication signals. 

Cyclostationarity is one of the important properties of communication signals [3]. 

Almost all common modulation formats exhibit spectral self-coherence or conjugate 

self-coherence at discrete multiples of the time periodicities of their waveform statis­

tics. This property has been used during the last decade to develop blind adaptive 

beamforming algorithms that do not require any knowledge about the array mani­

fold [3], [16], [103]. Several research areas exist in this field, including:

• The development of computationally efficient algorithms for blind adaptive 

beamforming that are robust against cycle frequency errors. Blind adaptive 

beamforming algorithms suffer from severe performance degradation for even 

a small mismatch in the cycle frequency of the desired signal [68], [69], [103]. 

This mismatch frequently arises due to the Doppler shift phenomenon which 

is common in radar, sonar, and communication systems. There is a need for 

mathematically rigourous and computationally efficient blind adaptive array 

processing algorithms that provide a suitable amount of robustness against cy­

cle frequency errors and prevent the degradation in performance that occurs in 

earlier approaches due to excessive or insufficient constraining of the problem.

• The development of robust semi-blind adaptive array processing algorithms that 

exploit both the available partial knowledge about the array manifold and the 

statistical properties of the signals used in practical communication systems. 

The development of such algorithms will link the blind and non-blind approaches 

that have dominated the field of adaptive beamforming for the last few decades.
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A ppendix A  

P roof of Theorem  5.1

Let us consider an operating environment with white noise, one desired signal and J  

jamming signals that are mutually uncorrelated. Therefore, the data covariance ma­

trix can be written as R x  = a 21 +  R s + J 2 i = i where the desired signal covariance 

matrix R s is given by (2.48) and the ith  interference covariance matrix is given by

r^i~ hRi = J ps, (f)(d(f)»(T(f)a(f,0,))){d(f)»(T(f)a(f,e,))) df. (A.l)

Let T ( / ) o ( / ,« .)  =  # . ( / )  <; C "  and =  * . ( / ,  e  C M. Therefore, we

can write the cost function of the robust beamforming problem in (5.10) as

j
w t R x w  =  a l \ \ w \ \ 2 + w r R s w  + w T R j W

i= 1
M  „fs_

= a l  l|Wm | | 2 +  /  p s ( f ) \ w T ( d ( f )  ® ^ f s ( f ) ) \ 2 d f
/  f sm=1 J “ V

J

+  P i ( f ) \ w T ( d ( f ) ® ^ i ( f ) ) \ 2 d f  (A-2)/ Ts 
1 = 1  ^  2

We can express this cost function in terms of the frequency responses of the M  FIR
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filters of the array processor as 

2  M  „ h .

w t R x w  =  ^ 2  [  |Wm(/)|2d/ + [  Ps ( f )

J  p h -

+  X I  /  PiU)
i = l  J ~ It  

2  pis. M  p^L

= + / > «
•/ s  */ _ T '  m = l

M L

m=l 1=1
2

4f

d/ 

(A.3)

+

2 m = l

J .ia

e /  ></)
i = l

M

m = l

d/

M

m = l

df (A.4)

where the first term in (A.3) has been derived using Parseval’s theorem.

We can also express the linear phase constraint in (5.10) in the frequency domain as

Im { W m{f)ej2wf('Lc ^ T,s} =  0 Vm =  1 , . . . ,  M; /  6 A f s  
2 ’ 2

(A.5)

Therefore, using (A.4) and (A.5), we can write the robust beamforming problem 

(5.10) as

min.. /  Ps( f )  
{Wm(/)}"=i J-%

J  „fs 
2

M

m=1
df + ~  F  T , \ W „ (/) |2d/

• i  J —it- 1 = 1  2

M

m = l

d/

M

m = l

s.t. eJ2' / (i ' - 1>T‘ ^ W m( / ) - e ( / )  [W1( / ) , . . . ,W m (/)]t > 1  V / 6 [/,./„]

f s  f s
’ 2 ’  2

(A.6)

where the optimization variables are now the set of Fourier transforms of the M  FIR 

filters of the array processor.
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In what follows, we will proof theorem 5.1 by contradiction. Let {VVm(/)} ^ _ 1 be 

the optimal solution to the above problem such that

M
oJ'2ir/(ic-l

m = 1

1)11 £ > „ ( / ) - e ( /)  [W1( / ) , . . . ,W „ ( / ) ] T = N ( f )  (A.7)

where N ( f )  is real, continuous, and greater than or equal to 1 for all /  G [— Jy , y ] .

We define the set of FIR filter coefficients {Vtti}to=1 such that their Fourier trans­

forms are given by

(A.8)

where VTO(/)  is the Fourier transform of Vm. First, we note that {Vm(/)}£f=1 is 

feasible, that is,

M
0j2irf(L c- l ) T s

m =  1

i M

N ( f )

Di 2 7 r / ( L C 1 )TS

m = 1

=  1 v /  e I f i J u (A.9)

and

M / ) '

=  0 V / G
/s J* 

'  2 ’ 2
(A.10)
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Next, we evaluate the cost function for the solution set

v  R xv  =
Is  M

f

+ E f , M
4 = 1

o  » h .  -t

' 7 .  1

I . : ? .2 m =  1

Is.

W J J )
JV(/)

M

2 f^2
df  + J .  p*(f)

M
W m( / )

m=1 J V ( / )
d/

£ > m / )
W m( f )

m = l

M

N ( f )

f ,  J - u  N * ( f )  f r
£|VVm(/)|2<i/ + f
m=1

d/

is

+
j  ri

u .

pi(f)

m =  

M

p. ( f )  
-*  JV2(/)

M

m = l

2  „ / a .  M

<  f f »  '

E * - ( /)w ™ ( /)

is
m = l

. h .  M  r ^

J l V W M ) ? d f + u M

df

df  

(A .ll)

+
4 = 1

2 m = l

Is

M

E  « *»(/)
m = l

d/

A ( / )

1W

r a = l

(A.12)
where the inequality in (A.12) is due to the fact that ps(f)  and {pi{f)}{=\ are non­

negative for all /  G [— ^-].

Note that (A.12) is satisfied with equality if and only if N( f )  =  1, V/ 6 [—y , y ] . 

Therefore, the robustness constraint has to be satisfied with equality for all frequen­

cies, otherwise (A.12) contradicts with the assumption that w  is the optimal solution 

for the robust beamforming problem.

Therefore, at the optimal point of the robust beamforming problem, the robustness 

constraint has to be satisfied with equality at all frequency points.
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A ppendix B 

Simplification of (5.15)

Expanding the matrix A (/*) =  I m <S> (B g ( f i )) and the matrix C  defined in (5.8), we 

can write Ar ( f i )CTD  as

A T(f i) C TD  =

9T{ f i )BT 0*x L

OixL

Oixl gT( f i )BT

C [ D

C \ D

_ c tm d

■ (B.l)

Using the definitions of C m and D  in (4.20) and (5.13), respectively, we can write

C ^ D  = ( I L ® em) ( B  <8> I M) = B  <g> e£. 

Substituting with (B.2) in (B.l), we obtain

(gT(f i) B TB ) ® e J

(B.2)

T(.gT( f , ) B TB ) ® e

(gT( f , ) B TB )  ® eTM 

(gT( f , ) B TB ) ® I M.
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Noting that B TB  E M.LcXLc =  diag{l, 2 , 2 , . . . ,  2}, we can write

AT( f i )CTD  =  gi f , )  ® I M = AT(/,) (B.5)

where g T(fi) = g T( f i ) B TB  =  [1,2 c o s(2 tt/*T), . . . ,  2 cos(27rf i (Lc -  1)T)].

Similarly, substituting with C 0 = I I ®  1 m  and D  — B  ® I m , we can write

gT{fi) B TC T0D  = g T( f i) B T { l L ® l TM) ( B ® I M)

= g T{fi) B T{ B ®  1tm) (B.6)

=  (gT( f i ) B T) ® 1)(B  <8> 1 ^)

=  (9 T{f i )BTB ) <g> 1 TM = gT(fi) ® 1 m =  r T(/i). (B.7)

Using (B.5) and (B.7) we arrive at the simplified form of (5.15) in (5.16).
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